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We present a formalism for combining logic programming and its flavour of nondetermin-
ism with probabilistic reasoning. In particular, we focus on representing prior knowledge 
for Bayesian inference. Distributional logic programming (Dlp), is considered in the context 
of a class of generative probabilistic languages. A characterisation based on probabilistic 
paths which can play a central role in clausal probabilistic reasoning is presented. We 
illustrate how the characterisation can be utilised to clarify derived distributions with 
regards to mixing the logical and probabilistic constituents of generative languages. We 
use this operational characterisation to define a class of programs that exhibit probabilistic 
determinism. We show how Dlp can be used to define generative priors over statistical 
model spaces. For example, a single program can generate all possible Bayesian networks 
having N nodes while at the same time it defines a prior that penalises networks with 
large families. Two classes of statistical models are considered: Bayesian networks and 
classification and regression trees. Finally we discuss: (1) a Metropolis–Hastings algorithm 
that can take advantage of the defined priors and the probabilistic choice points in the 
prior programs and (2) its application to real-world machine learning tasks.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Bayesianism provides a powerful framework for reasoning with statistical knowledge. The result of reasoning is captured 
by the posterior distribution. Knowledge is captured by the prior and the evidence. The former can represent expert knowl-
edge or belief in a domain, while the latter can take the form of data to be analysed. The basic Bayesian premise can be 
summarised as:

posterior ∝ prior × evidence

A plethora of algorithms operate on the above principle to either locate important members of the posterior, such as the 
maximum a posteriori mode (MAP), or to characterise the whole distribution. Computation in both cases is often pro-
hibitively lengthy to allow exact algorithms, so approximations are routinely used. These include variational methods [26]
which approximate the inference on the evidence by considering a simpler inference task while Markov chain Monte Carlo 
(MCMC) simulations approximate the whole posterior by means of a stochastic search.
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Bayesian algorithms that take into account the prior part of the above premise often do so in a restricted form. For 
instance, [10] uses a conjugate prior over classification trees and in [21] the authors use an uninformative prior over BNs. 
Reasons for such restrictions include both the lack of relevant knowledge and the limited availability of formalisms that 
can express the known biases and for which effective inference procedures exist. However, in application areas such as 
computational biology and bioinformatics a growing amount of formalised knowledge is becoming available. The ability to 
represent complex biological knowledge would greatly benefit the application of Bayesian methods in these areas as it can 
focus computational resources in parts of the solution space that are most likely to hold the answer or of particular interest 
to the biologists. On the other hand, Bayesian methods provide a convenient, clean framework in which such knowledge 
can be incorporated.

The incorporation of prior knowledge is playing an increasingly important role in bioinformatics and computational 
biology. A vast array of experimental data is becoming publicly available in unprecedented volumes. Summarising and 
incorporating extracted knowledge in the analyses of new data is a route already taken by many labs. In addition formal 
frameworks for representing knowledge such as Gene Ontology [37] and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG, [27]) are gaining ground in both depth and breadth of the knowledge they store.

Logic programming (LP) is an attractive formalism for representing crisp knowledge. Probabilistic extensions to logic 
programming have been previously proposed for the purpose of representing Bayesian priors [13,3,6]. Here, we present an 
expressive language that extends logic clauses with probabilities which are calculated by guards encoding arbitrary relations. 
We also provide a characterisation that elucidates the interplay of nondeterminism in LP and probabilistic reasoning for 
a number of generative languages. Additionally, we put emphasis on representing knowledge for effective probabilistic 
problem solving via a number of examples that represent knowledge over model structures and which are drawn from the 
literature. We detail how the probabilistic aspects of our formalism enable Bayesian learning that can exploit both the prior 
information and the internal probabilistic choice points to create a search space constrained Metropolis–Hasting algorithm. 
This paper provides the knowledge representation machinery for the conceptual framework of [3] and the machine learning 
results of [4–7]. The full syntax is presented for the first time, along with semantic considerations and a thorough discussion 
and mathematical framework for probabilistic paths (Section 4). Furthermore, details on constructing effective priors that 
model priors from the literature are discussed.

2. Preliminaries

In this section we review the necessary terminology from logic programming. A logic program L is a set of clauses of the 
form Head :- Body defining a number of predicates. Head is an atom, a single positive literal constructed from a predicate 
symbol and a number of term arguments. Body is a conjunction of zero or more atoms A1, . . . , An . Each term is a recursively 
defined structure that might be an atomic value, a variable or a function constructed by an atomic function symbol and 
n term arguments. The form Head :- Body is syntactic sugar for the disjunction Head ∨ ¬A1 ∨ · · · ∨ ¬An with all variables 
implicitly universally quantified. We follow LP conventions and have variables starting by a capital letter (List) and atoms 
by a lower case letter (constant). An example term of 4 arguments is: cart( f 1, v1, L, R). It represents a classification tree 
which splits some data at the top level on feature f 1 and value v1, while the left (L) and right (R) branches are as yet to 
be constructed and are shown here as free variables.

A query or goal G1 is a disjunction of negative literals (¬A(1,1) ∨ . . . ∨ ¬A(1,n)) which the logic engine attempts to refute 
using the clauses in L. This is done by employing SLD (linear resolution of definite clauses with a selection rule). Linear 
resolution at step i will resolve ¬A(i,1) with the head (Hi) of the first matching clause found (Mi ) and replace it with the 
body of the clause thus generating a new goal. Matching is via the unification algorithm, which when successful, provides 
a substitution θi such that A(i,1)/θi = Hi/θi . Intuitively, successful unification is a method for selecting which of the clauses 
in the program are applicable in answering the query while θi possibly makes the free variables in Gi more concrete thus 
helping to build an answer to the query. A computation terminates when the current goal is the empty one or no matching 
clause is found. In the former case an overall substitution is constructed θ = (θN , . . . , θ1) where θ is the composition of the 
substitutions θN , . . . , θ1 with G/θ being the computed answer.

The logic engine explores yet unexplored parts of the space, by returning to the latest matching step and attempting 
to find alternative resolution clauses. In logic programming parlance, this is a backtracking step. In the case where no 
matching clauses are found, the engine will backtrack to the second latest matching step, and thus recursively search until 
an alternative can be found. Computed answers in the form of θx substitutions done after the backtracking point are undone. 
The complete search ends when all alternatives have been exhausted. In what follows we will use Ai to refer to A(i,1), that 
is, the literal used for the ith resolution step.

As an illustrating example program, consider the following two clauses defining the member/2 predicate:

member(H, [H|T ]). (C1)

member(El, [H|T ]) :− (C2)

member(El, T ).

The first clause, (C1), states that the head of a list is its first element, while the second clause states that element El is a 
member of the list, if it is a member of the tail (T ) of the list. Lists are convenient recursive term structures commonly used 
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