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belief adjustment. In this paper we investigate the application of this approach to survival
analysis with time-dependent covariate effects, a more complicated problem than previous
applications. We use a piecewise-constant hazard function with a prior in which covariate
effects are correlated over time. The need for computationally intensive methods is avoided

I.fi{,f:fjgar Kkinematics and the relatively simple structure facilitates interpretation. Our approach eliminates the
Bayes linear Bayes graphical model problem of non-commutativity which was observed in earlier work by Gamerman. We
Dynamic model apply the technique to data on survival times for leukemia patients.

Piecewise constant hazard © 2016 Elsevier Inc. All rights reserved.

Survival analysis
Time-dependent covariate effects

1. Introduction

A Bayes linear analysis [6] differs from a full Bayesian analysis in that only first and second order moments are specified
in the prior. Posterior (termed adjusted) moments are then calculated when data are observed. The introduction of Bayes
linear kinematics and Bayes linear Bayes models [5] extends Bayes linear methods to allow the incorporation of observations
of types which are not readily accommodated in a straightforward Bayes linear analysis. For example, beliefs about certain
unknown quantities might be updated by full conditional Bayesian inference when observations are made on conditionally
Poisson or binomial variables and then information can be propagated between these unknowns, or to other unknowns,
via a Bayes linear belief structure. This approach avoids the need for computationally intensive methods such as Markov
chain Monte Carlo which are often required in standard Bayesian analyses. Computational time in evaluating posterior
distributions can be an important issue in areas such as design of experiments [19], clinical decision rules or evaluation
of diagnostic tests. Such analyses may require the repeated evaluation of posterior distributions given large numbers of
simulated data sets. In such cases, the Bayes linear kinematic method may provide an effective emulator [12].

Wilson and Farrow [26] introduced the use of a link function to map the range of an unknown, such as the mean of a
Poisson distribution, onto the whole real line and improve the linearity of the relationships represented by the Bayes linear
structure. In this paper we show how Bayes linear kinematics may be applied to a more complicated problem, specifically
in the analysis of survival data, and that this brings appealing advantages over standard techniques. Our analysis uses death
and censoring times, in contrast to the relatively simple actuarial methods developed in [26]. We use a piecewise constant
hazards model with temporally-dependent hazard priors. We combine fully Bayesian conjugate updating for individuals
in intervals and Bayes linear kinematic updating to propagate changes in belief to other individuals and intervals. Our
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model is related to that of Gamerman [3] but, using the Bayes linear kinematic approach, we overcome the problem of
non-commutativity of updates observed by Gamerman.

We consider Bayesian analysis from a subjectivist perspective [4,16]. Therefore we give attention to the appropriate
specification of prior beliefs.

The remainder of the paper is structured as follows. Section 2 gives an overview of proportional hazards models and the
piecewise constant hazards model and reviews the model of Gamerman [3]. In Section 3 we give a brief introduction to the
results of Goldstein and Shaw [5]. In Section 4 we describe our Bayes linear kinematic solution to the survival problem in
four stages; the guide relationship, system evolution, use of Bayes linear kinematics and calculation of the expectations and
variances. The usefulness of the approach is illustrated with an example involving survival times of leukemia patients in the
North-West of England in Section 5. Some conclusions and areas for further work are presented in Section 7.

2. Survival analysis
2.1. Introduction

In this paper we investigate the application of Bayes linear kinematics and Bayes linear Bayes models in survival analysis,
specifically a proportional hazards model with piecewise constant hazards. Survival analysis is concerned with modelling the
time elapsed, known as the survival time, until some event occurs. For convenience we shall refer to the event as “death”.

The survival time ¢ of an individual is a realisation of a random variable T. Associated with T is a survival function
S(t) =Pr(T >t), a probability density function f(t) and a hazard function h(t) = f(t)/S(t). Censoring of observations is
a common feature of survival data. In right censoring all that is known is that t > ¢ for some value c, in left censoring
this condition is t < ¢ and in interval censoring c; <t < ¢, for some values cq, cy. In this paper we consider only right
censoring, which is the most common type, and assume that the censoring is non-informative. That is, the survival time
T is independent of the mechanism which causes an observation to be censored. Further information on Bayesian survival
analysis can be found in [15] and [10].

2.2. Proportional hazards models

Suppose we have individuals i =1,..., p and individual i has covariate values x; = (i 0,Xi1,...,Xiq) Where, typically,
X;,0 = 1. Associated with individual i is a hazard function h;(t). A popular and appealing way to relate the covariate values
to the survival distribution for an individual is to make the proportional hazards assumption [1]. Then we can write h;(t) =
¢iho(t), where ¢; is a constant with respect to time and hg(t) is a baseline hazard function. We can relate an individual’s
hazard function to x;, the individual’s covariate vector, by setting

q
¢i = exp (Z Xi,/cﬂk) ; (1)

k=1

for some parameters fi, ..., Bg, which, in a simple proportional hazards model, remain constant over time.
2.3. Piecewise constant hazards model

We might be unwilling to assume a particular form for the baseline hazard function hg(t). A simple and much investi-
gated way to relax this assumption is to use a piecewise constant hazards model (e.g. [10]). Time is partitioned into disjoint
intervals. In each interval a constant hazard is specified but the hazards are allowed to vary from interval to interval.

Furthermore we may wish to allow the effects of the covariates, represented by the coefficients fi,..., By, to vary
from one time interval to another. This has led to the development of dynamic survival models in which the coefficients
can vary over time [17]. We shall consider a dynamic model h;(t) = exp{x;8(t)}, where X = (1,x;1,...,X;q) and B'(t) =
(Bo(t), B1(D), ..., Bg(t)) with Bo(t) =log{ho(t)}, so that we can model changes in the effects of the covariates over time. The
static model in (1) is then a special case of this more general model.

We choose fixed time points g, 71, ..., Tr such that to =0 and t, — oco. This partitions time into intervals. We say that
the jth interval is R; =[7j_1, Tj). Then, for 7;_1 <t < 7j, the baseline hazard is hg(t) = Ao j and the hazard function for
individual i is h;(t) = A; j = i, jro,j = exp(n; j), where n; j = X/ 8; is the linear predictor and B = (Bj,0, ..., Bjq)’. That is, the
hazard for each individual remains constant through each of the time intervals. The integrated hazard H;(t) = fot hi(w)du is
then

Hi®) = Y his(Te— Teo1) + 2i j(E — Tj1),
kit <t

fork=1,...,j—1.
If we condition on T > 7; then we obtain the conditional survival function and conditional probability density function
for individual i at time t. These are, for 7;_1 <t < T},
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