
International Journal of Approximate Reasoning 78 (2016) 103–115

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Advances in integrative statistics for logic programming

Nicos Angelopoulos a,b, Samer Abdallah c, Georgios Giamas b

a Cancer Genome Project, Welcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
b Department of Surgery and Cancer, Division of Cancer, Imperial College, London, W12 0NN, UK
c Department of Computer Science, University College London, WC1E 6BT, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2016
Received in revised form 13 May 2016
Accepted 17 June 2016
Available online 5 July 2016

Keywords:
R statistical computing
Logic programming
Visualisation
Machine learning
Graph drawing
bioinformatics

We present recent developments on the syntax of Real, a library for interfacing two Prolog 
systems to the statistical language R . We focus on the changes in Prolog syntax within 
SWI-Prolog that accommodate greater syntactic integration, enhanced user experience and 
improved features for web-services. We recount the full syntax and functionality of Real
as well as presenting a full application and sister packages which include Prolog code 
interfacing a number of common and useful tasks that can be delegated to R . We argue 
that Real is a powerful extension to logic programming, providing access to a popular 
statistical system that has complementary strengths in areas such as machine learning, 
statistical inference and visualisation. Furthermore, Real has a central role to play in the 
uptake of semantic web, computational biology and bioinformatics as application areas for 
research in logic programming.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Real [4] is a low level interface between Prolog and R [14]. It enables the user to call R functions on Prolog data and 
communicate the results back to the logic system. The library works on two open source systems: YAP [6] and SWI-Prolog 
[25]. This is possible as YAP has a fairly complete emulation of SWI’s C language interface [23]. Since its first introduction 
Real has evolved and has exerted some influence in advances to Prolog syntax. Furthermore, it has been used in a number 
of projects and in the process acquired a number of sister libraries. These libraries deliver Prolog predicates to useful tasks 
that can be best be dealt by existing R code. Real has thus be shown to be a useful and well integrated Prolog library that 
can provide access to the wealth of open source code available in R.

Here we focus on describing the full syntax of Real 2 and its role in recent developments with syntactic changes in SWI-7. 
The changes in both systems have made the integration of R code into Prolog more natural and unobtrusive. Changes in 
the library itself had to be made to accommodate transition to the new Prolog syntax while preserving compatibility with 
traditional implementations. It is thus the case that the Real can be used in both of the supported Prolog systems, but only 
SWI-Prolog benefits from the new tighter integration.

R has a huge array of contributed code often accompanying published papers. It has particular strengths in statistical in-
ference [19,8], machine learning [11,9] and data visualisation [20]. Within the specialist area of bioinformatics, Bioconductor 
[7] is a large agglomerating project that manages a large number of additional, user-contributed libraries.

Real gives access to R libraries that can complement Prolog’s weaknesses in areas such as statistical inference and visual-
isation. With the library installed, it is straight forward with a basic grasp of R to call its functions on Prolog data. However, 

E-mail address: nicos.angelopoulos@sanger.ac.uk (N. Angelopoulos).

http://dx.doi.org/10.1016/j.ijar.2016.06.008
0888-613X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2016.06.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:nicos.angelopoulos@sanger.ac.uk
http://dx.doi.org/10.1016/j.ijar.2016.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2016.06.008&domain=pdf


104 N. Angelopoulos et al. / International Journal of Approximate Reasoning 78 (2016) 103–115

Table 1
Library’s main predicates.

Indicator Operator Symbol Description

r/2 <- ← Evaluate R expression and assign result
r/1 <- ← Evaluate R expression and ignore result
r_new/1 <<- � Argument is a fresh R variable
� /2 <<- � r/2 but with error if R variable exists
r_call/2 <-C++O ← ++ r/{1,2} with options (O)
r_library/1 Load R library in a hookable manner
r_start/0 Start the connection to R
r_stop/0 Stop the connection to R
r_remove/1 Remove R variable
r_thread_loop/0 Start an R thread server
r_serve/0 Serve all R expressions on queue thread

for users with no prior exposure to R there still might be a barrier. To address this, and in order to increase general usability 
of the library a number of sister packages have been developed. We highlight some of the predicates that enable access to 
R code without any knowledge of R.

Central application areas since the inception of Real has been these of semantic web, bioinformatics and computational 
biology. In this paper we describe the role of Real in a web-based application as well as presenting sister libraries that here 
have evolved for addressing real world bioinformatics tasks in the context of a variety of projects: [27,12,16]. The main thesis 
of this paper is that Prolog can play a central role as a unifying platform in research in statistical and probabilistic areas 
such as web reasoning and bioinformatics, taking advantage of its strong grip on knowledge representation and reasoning 
and in combinations with recent advances with Real and web programming [24,10].

2. Real

In this section we describe the main features of Real and the innovations in the new version Real 2, which include: 
syntactic extensions that allow R code to be represented in a form that more closely resembles normal R syntax, the 
new predicate r_library/1, which provides a more flexible way to locate and load R libraries from their local filestore, and 
support for multiple Prolog threads to use a single R session, allowing Real to be used in SWI-Prolog’s multithreaded web 
server framework. Taken together, these innovations allow a tighter and smoother integration of R code and enable Prolog 
programmers to tap in the wealth of statistical functions implemented in R with greater ease.

2.1. Real’s predicates

Real 2 adopts the convention of a uniform prefix to all the library predicates. The full list of Real’s predicates along with 
the associated operators and brief descriptions is shown in Table 1. New additions include a hookable locator for R libraries, 
web server support, intuitive syntax for non-destructive assignment and a new interface predicate for mixing Prolog and R
options with options for directing output to graphical devices.

With the new predicate r_library/1 users can load the standard R libraries in their local installation. In addition, the pred-
icate can be directed to user specified locations where local, possibly, changed sources of such libraries can be preferentially 
loaded in Real. The flexibility allows for (a) specific code to be loaded only known to Real thus leaving the remainder of the 
R installation intact, and (b) user code that can be made available and can work either with the distributed version while 
having extra functionality when used with the altered sources.

2.2. Basic operation

The bulk of the interaction with Real is via a single predicate ← /2 which is also defined as an infix operator. It is similar 
to the Prolog is/2 operator, except that the term on the right-hand side is interpreted as an R expression and evaluated 
in the embedded R session. Within Real, ← /2 can be used to transfer data between R and Prolog, to apply R functions 
to Prolog data, retrieve R values as Prolog data, and destructively assigning values to R variables. Disambiguation clearly 
distinguishes the different modes, which can be summarised by:

−PlVar ← +Rexpr
+RAexpr ← +PlData
+RAexpr ← +Rexpr

Disambiguation of the call modes depends on whether the right hand side (RHS) is ground and if so on its term form. 
When the left hand side (LHS) of the operator is a free variable, the first mode is assumed, where the value of Rexpr is 
passed to PlVar after it has been evaluated in R. When the RHS is a c/N term or a list then the second mode is assumed 
and the Prolog data term in the RHS, PlData, is transferred to the assignable R expression in the LHS: RAexpr, typically an R



Download English Version:

https://daneshyari.com/en/article/6858917

Download Persian Version:

https://daneshyari.com/article/6858917

Daneshyari.com

https://daneshyari.com/en/article/6858917
https://daneshyari.com/article/6858917
https://daneshyari.com

