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Probabilistic programming is an area of research that aims to develop general inference 
algorithms for probabilistic models expressed as probabilistic programs whose execution 
corresponds to inferring the parameters of those models. In this paper, we introduce 
a probabilistic programming language (PPL) based on abductive logic programming for 
performing inference in probabilistic models involving categorical distributions with 
Dirichlet priors. We encode these models as abductive logic programs enriched with 
probabilistic definitions and queries, and show how to execute and compile them to 
boolean formulas. Using the latter, we perform generalized inference using one of two 
proposed Markov Chain Monte Carlo (MCMC) sampling algorithms: an adaptation of 
uncollapsed Gibbs sampling from related work and a novel collapsed Gibbs sampling (CGS). 
We show that CGS converges faster than the uncollapsed version on a latent Dirichlet 
allocation (LDA) task using synthetic data. On similar data, we compare our PPL with LDA-
specific algorithms and other PPLs. We find that all methods, except one, perform similarly 
and that the more expressive the PPL, the slower it is. We illustrate applications of our PPL 
on real data in two variants of LDA models (Seed and Cluster LDA), and in the repeated 
insertion model (RIM). In the latter, our PPL yields similar conclusions to inference with 
EM for Mallows models.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Probabilistic programming is an area of research that aims to develop general inference algorithms for probabilistic mod-
els expressed as probabilistic programs whose execution corresponds to inferring the parameters of the probabilistic model. 
A wide range of probabilistic programming languages (PPLs) have been developed to express a variety of classes of prob-
abilistic models. Examples of PPLs include Church [1], Anglican [2], BUGS [3], Stan [4] and Figaro [5].1 Some PPLs, such as 
Church, enrich a functional programming language with exchangeable random primitives, and can typically express a wide 
range of probabilistic models. However, inference is not always tractable in these expressive languages. Other PPLs are logic-
based. They typically add probabilistic annotations or primitives to a logical encoding of the model. This encoding usually 
relates either to first-order logic, e.g. Alchemy [6], BLOG [7] or to logic programming, e.g. PRiSM [8], ProbLog [9]. Most 

✩ This paper is part of the virtual special issue on Probabilistic logic programming 2015, edited by J. Vennekens and F. Riguzzi.

* Corresponding author.
E-mail address: ct1810@imperial.ac.uk (C.R. Turliuc).

1 For a more comprehensive list cf. http :/ /probabilistic-programming .org/.

http://dx.doi.org/10.1016/j.ijar.2016.07.001
0888-613X/© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijar.2016.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://creativecommons.org/licenses/by/4.0/
mailto:ct1810@imperial.ac.uk
http://probabilistic-programming.org/
http://dx.doi.org/10.1016/j.ijar.2016.07.001
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2016.07.001&domain=pdf


224 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240

logic-based PPLs focus only on discrete models, and consequently are equipped with more specialized inference algorithms, 
with the advantage of making the inference more tractable.

However, logic-based PPLs generally do not consider Bayesian inference with prior distributions. For instance, Alchemy 
implements Markov logic, encoding a first-order knowledge base into Markov random fields. Uncertainty is expressed by 
weights on the logical formulas, but it is not possible to specify prior distributions on these weights. ProbLog is a PPL 
that primarily targets the inference of conditional probabilities and the most probable explanation (maximum likelihood 
solution); it does not feature the specification of prior distributions on categorical distributions. PRiSM is a PPL which in-
troduces Dirichlet priors over categorical distributions and is deigned for efficient inference in models with non-overlapping 
explanations.

This paper contributes to the field of logic-based PPL by proposing an alternative approach to probabilistic programming. 
Specifically, we introduce a PPL based on logic programming for performing inference in probabilistic models involving 
categorical distributions with Dirichlet priors. We encode these models as abductive logic programs [10] enriched with 
probabilistic definitions and inference queries, such that the result of abduction allows overlapping explanations. We propose 
two Markov Chain Monte Carlo (MCMC) sampling algorithms for the PPL: an adaptation of the uncollapsed Gibbs sampling 
algorithm, described in [11], and a newly developed collapsed Gibbs sampler. Our PPL is similar to PRiSM and different from 
ProbLog in that it can specify Dirichlet priors. Unlike PRiSM, but similarly to ProbLog, we allow overlapping explanations. 
However, in this paper, all the models we study have non-overlapping explanations.

We show how our PPL can be used to perform inference in two classes of probabilistic models: Latent Dirichlet Allocation 
(LDA, [12]), a well studied approach for topic modeling, including two variations thereof (Seed LDA and Cluster LDA); 
and the repeated insertion model (RIM, [13]), a model used for preference modeling and whose generative story can be 
expressed using recursion. Our experiments demonstrate that our PPL can express a broad class of models in a compact 
way and scale up to medium size real-data sets, such as LDA with approximately 5000 documents and 100 words per 
document. On synthetic LDA data, we compare our PPL with two LDA-specific algorithms: collapsed Gibbs sampling (CGS) 
and variational expectation maximization (VEM), and two state-of-the-art PPLs: Stan and PRiSM. We find that all methods, 
with the exception of the chosen VEM implementation, perform similarly, and that the more expressive the method, the 
slower it is, in the following order, with the exception of VEM: CGS (fastest), PRiSM, VEM, our PPL, Stan (slowest).

The paper is organized as follows. Section 2 presents the class of probabilistic models supported by our PPL. In Section 3
we outline the syntax and the semantics of the PPL, whereas our two Gibbs sampling algorithms are discussed in Section 4. 
Section 5 shows our experimental results and Section 6 relates our PPL to other PPLs and methods. Finally, Section 7
concludes the paper.

2. The probabilistic model

This section begins with the description of a particular approach to probabilistic programming. Then we introduce 
peircebayes2 (PB), our probabilistic abductive logic programming language designed to perform inference in discrete 
models with Dirichlet priors. Throughout the paper we will use normal font for scalars (α), arrow notation for vectors (�α), 
and bold font for collections with multiple indexes (ααα), e.g. sets of vectors.

Probabilistic programs, as defined in [14], are “ ‘usual’ programs with two added constructs: (1) the ability to draw values 
at random from distributions, and (2) the ability to condition values of variables in a program via observe statements”. We 
can instantiate this general definition by considering the notions of hyperparameters ααα , parameters θθθ , and observed variables 
�f and assuming the goal to be the characterization of the conditional distribution P (θθθ |�f ; ααα).

Most PPLs assume such a conditional with a continuous sample space, i.e. they allow, in principle, probabilistic pro-
grams with an uncountably infinite number of unique outputs, should one not take into account issues of real number 
representations. In our approach, the conditional sample space is assumed to be finite, i.e. one can enumerate all possible 
executions. Specifically, in our PPL we restrict the class of distributions from which we can draw to categorical distributions 
with Dirichlet priors. The Dirichlet priors are chosen for their conjugacy, which supports efficient marginalization.

The generality of our PPL is not given by the range of probability distributions that we can draw from, but rather by 
the way the draws from categorical distributions interact in the “generative story” of the model. We choose our “usual pro-
grams” to be abductive logic programs enriched with probabilistic primitives. Similarly to Church, Anglican and other PPLs 
this is declarative programming language, but one in which the generative story is expressed as an abductive reasoning task 
responsible for identifying relevant draws from the categorical distributions given the observations. Our choice is motivated 
by the significant amount of related work in probabilistic logic programming, although both functional and logic program-
ming are Turing complete, so they are equally general. In what follows we present the class of probabilistic models that are 
supported by our PPL. We define them first as uncollapsed models, then show how they can be collapsed. As demonstrated 
in Section 4, this dual formalization leads naturally to the possibility of using in our PPL uncollapsed as well as collapsed 
MCMC sampling methods.

2 Named, in Church style, after Charles Sanders Peirce, the father of logical abduction, and Thomas Bayes, the father of Bayesian reasoning. Pronounced 
[’p3rs’beız].
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