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This paper proposes a prior near-ignorance model for regression based on a set of Gaussian 
Processes (GP). GPs are natural prior distributions for Bayesian regression. They offer 
a great modeling flexibility and have found widespread application in many regression 
problems. However, a GP requires the prior elicitation of its mean function, which 
represents our prior belief about the shape of the regression function, and of the covariance 
between any two function values.
In the absence of prior information, it may be difficult to fully specify these infinite 
dimensional parameters. In this work, by modeling the prior mean of the GP as a 
linear combination of a set of basis functions and assuming as prior for the combination 
coefficients a set of conjugate distributions obtained as limits of truncate exponential 
priors, we have been able to model prior ignorance about the mean of the GP. The resulting 
model satisfies translation invariance, learning and, under some constraints, convergence, 
which are desirable properties for a prior near-ignorance model. Moreover, it is shown 
in this paper how this model can be extended to allow for a weaker specification of the 
GP covariance between function values, by letting each basis function to vary in a set of 
functions.
Application to hypothesis testing has shown how the use of this model induces the 
capability of automatically detecting when a reliable decision cannot be made based on 
the available data.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A Gaussian Process (GP) extends multivariate Gaussian distributions to infinite dimensionality, thus defining a distribu-
tion over functions. Therefore, it is a natural prior distribution in Bayesian analysis for learning an unknown real-valued 
function f (x) from a set of noisy data. GPs have found widespread use in different application domains such as classifica-
tion, regression etc. [1–6]. The reason of such success can be attributed to the great modelling flexibility of GPs, which are 
often used in situations where little is known about f (x).

The probabilistic formulation of GPs and the simple closed form expression of their posterior inferences, makes them a 
good starting point to develop prior near-ignorance models for nonparametric regression. There are many techniques other 
than GPs available for nonparametric regression, e.g., splines, relevance vector machines, kernel smoothers, etc., some of 
which share strong analogies with Gaussian Processes [4, Sec. 6]. Their relative strengths and weaknesses w.r.t. GPs are 
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discussed in [4, Sec. 7]. As they are all precise methods, we can expect them to suffer from the same weaknesses outlined 
below for the precise GPs.

A GP is completely specified by its mean function (encoding our prior belief about the shape of the regression function) 
and its kernel k(x, x′), used to define the covariance between any two function values: Cov( f (x), f (x′)) = k(x, x′). A mul-
titude of possible families exists for the covariance function, including squared exponential, polynomial, periodic, etc. (see 
[4]), among which the squared exponential family is by far the most popular. In the absence of prior knowledge, it can be 
difficult to make well grounded choices about the mean function and the kernel. A solution, proposed, among others, in 
[4, Ch. 2.7] to allow for a weaker specification of the prior mean function, is to use a linear combination h(x)w of a set 
of fixed basis functions h(x) = [h1(x), . . . , hp(x)] whose coefficients w = [w1, . . . , w p]T are assumed to have an improper 
uniform prior distribution. Such prior belongs to the family of the so-called non-informative priors, which are commonly 
used in objective Bayesian analysis based on the fact that they satisfy some desirable invariance property, like, for instance, 
translation invariance. However, the improper uniform prior is just one among the priors presented in [7], all of which 
verify translation invariance and conjugacy with the likelihood of the GP regression model. Choosing a different prior in 
this family would lead to different posterior inferences. Therefore, the choice of the improper uniform prior should not be 
considered fully uninformative.

A way to remove this arbitrariness in the choice of the prior is to use a set of prior distributions, rather than a single 
distribution, and to update each of them by Bayes rule, producing a set of posterior distributions. This approach proceeds 
after Bayesian sensitivity analysis or Bayesian robustness [8], but with a different viewpoint, as it does not assume the 
existence of a correct, although unknown, prior distribution. Instead, following the theory of imprecise probabilities or 
coherent lower (and upper) previsions [9,10], only upper and lower bounds for the posterior inferences of interest (expressed 
as expectations) are retained as valid representation of our state of knowledge. In lack of prior knowledge, to reflect this 
state of prior ignorance, the set of priors M should be as large as possible to be vacuous for the inferences of interest, i.e., it 
should provide upper and lower bounds that encompass all admissible values of such inferences. On the other side, it has to 
be small enough to guarantee learning from a finite number of observations. As prior ignorance and learning from data are 
usually conflicting properties [9,11,12], prior ignorance is actually required only for a limited number of basic inferences, 
thus modeling a state of near-ignorance.

In this work, we show that a regression model verifying prior near-ignorance and learning can be obtained by assuming 
for w the set of priors M presented in [7], which includes finitely additive probabilities obtained as limits of truncated 
exponential functions. We call this model an Imprecise GP (IGP). This set of priors can be interpreted as the set of all GPs 
with fixed kernel k(x, x′) and mean function free to vary in the set of all possible linear combinations of the set of basis 
functions h(x). This model improves with respect to a precise GP prior, as it models prior ignorance about the mean of 
the Gaussian process, i.e., about the value of the regression function. Moreover, it verifies translation invariance and, under 
some assumptions, convergence, which are desirable properties for a prior near-ignorance model, as discussed in [7]. Notice, 
however, that this model still requires to specify the covariance between any two function values, for which a good amount 
of prior knowledge is necessary. To address this issue, some preliminary work aimed to weaken the prior specification 
of the covariance is also presented. It builds on the idea of letting the basis function free to vary in a set of admissible 
functions, starting from the simple case of an IGP with single basis function free to vary in a set of functions obtained as 
linear combination of the basis functions in h(x).

To demonstrate the properties of the proposed approach, the IGP model has been applied to statistical hypothesis testing, 
focusing on a test for the difference between two regression functions given two samples of noisy observations. A nonpara-
metric Bayesian test for the equality of regression functions based on GPs is described in [13]. In that work it is assumed 
that the covariates of the two samples cover the same range of values, and the comparison between the regression func-
tions is limited to that range of values, because, having no data outside of it, nothing can be stated about the difference 
or equality of the two functions in other ranges of values. Instead, using the IGP it is possible to perform the equality test 
without worrying about the training covariate values, as the imprecise approach is able to identify those instances where 
the decision is prior dependent and thus it automatically detects when a reliable decision cannot be made.

2. Gaussian process

Consider the regression model

y = f (x) + v, (1)

where x ∈ X ⊆ R, f : R → R and v ∼ N (0, σ 2
v ) is a white Gaussian noise with variance σ 2

v , and assume that we observe 
the data (xi, yi) for i = 1, . . . , n. Our goal is to employ these observations to make inferences about the unknown function 
f (x). Following the Bayesian estimation approach, we place a prior distribution on f (x), and employ the observations to 
compute its posterior distribution; finally we use this posterior to make inferences about f (x). Since f (x) is a function, the 
Gaussian process is a natural prior distribution for it [3,4]. Formally,
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