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This paper introduces a new probabilistic graphical model called gated Bayesian network
(GBN). This model evolved from the need to represent processes that include several 
distinct phases. In essence, a GBN is a model that combines several Bayesian networks 
(BNs) in such a manner that they may be active or inactive during queries to the model. 
We use objects called gates to combine BNs, and to activate and deactivate them when 
predefined logical statements are satisfied. In this paper we also present an algorithm 
for semi-automatic learning of GBNs. We use the algorithm to learn GBNs that output 
buy and sell decisions for use in algorithmic trading systems. We show how the learnt 
GBNs can substantially lower risk towards invested capital, while they at the same time 
generate similar or better rewards, compared to the benchmark investment strategy buy-
and-hold. We also explore some differences and similarities between GBNs and other 
related formalisms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs) can be interpreted as models of causality at the macroscopic level, where unmodelled causes 
add uncertainty. Cause and effect are modelled using random variables that are placed in a directed acyclic graph (DAG). The 
causal model implies some probabilistic independencies among the variables, that can easily be read off the DAG. Therefore, 
a BN does not only represent a causal model but also an independence model. The qualitative model can be quantified by 
specifying certain marginal and conditional probability distributions so as to specify a joint probability distribution, which 
can later be used to answer queries regarding posterior probabilities, interventions, counterfactuals, etc. The independencies 
represented in the DAG make it possible to compute these posteriors efficiently. Furthermore, they reduce the number of 
parameters needed to represent the joint probability distribution, thus making it easier to elicit the probability parameters 
needed from experts or from data. See [1–3] for more details.

A feature of BNs, known as the local Markov property, implies that a node is independent of all other non-descendent 
nodes given its parent nodes, where the relationships are defined with respect to the DAG of the BN. If we define the 
parents of Xi as Parents(Xi), the local Markov property allows us to factorise the joint probability distribution according to 
Equation (1).

p(X1, X2, . . . , Xn) =
n∏

i=1

p(Xi |Parents(Xi)) (1)
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Fig. 1. GBN using two phases.

Fig. 2. GBN using utility nodes.

Despite their popularity and advantages, there are situations where a BN is not enough. For instance, when trying to 
model the process of a trader buying and selling stock shares, we wanted a model that switched between identifying buying 
opportunities and then, once such have been found, identifying selling opportunities. The trader can be seen as being in 
one of two distinct phases: either looking for an opportunity to buy shares and enter the market, or an opportunity to 
sell shares and exit the market. These two phases can be very different and the variables included in the BNs modelling 
them are not necessarily the same. Dynamic BNs have traditionally been used to model temporal processes, and as their 
name suggests, they model the dynamics among variables between typically equally spaced time steps. However, processes 
that entail different models at different phases, and where the transition between phases depends on the observations 
made, are not easily captured by dynamic BNs, as they assume the same static network at each time step. The need to 
switch between different BNs was the foundation for the probabilistic graphical model presented herein, which we call 
gated Bayesian networks (GBNs). In Fig. 1 we present a GBN that uses two different BNs (Buy and Sell). In Section 2.2 we 
will explain how decisions can be connected to the phase changes of a GBN, we will specifically show how buy and sell 
decisions are connected to the phase changes for the GBN in Fig. 1. It should however be noted that we will not always 
connect a phase change with a decision, as there will be an example of in Section 3.2. Sometimes a phase change is needed 
in order to use a different BN without any explicit decision connected to it.

Intuitively, a GBN makes explicit the possible transitions between the contained models, i.e. the phases, along with the 
driving variables in these phases. This is not only advantageous from a representational point of view, but since constraints 
are encoded in the model, parameter learning will be influenced by these constraints. For instance, when a transition from 
the Sell BN in Fig. 1 should occur will be dependent on when a transition from the Buy BN occurs, as one must happen 
before the other. Imagining two experts, where one gives recommendations of when to buy assets and the other when to 
sell assets, we would want the experts to work well together. If the first expert has a long-term view and the second expert 
has a short-term view, then recommendations to buy will be far apart, but as the second expert assumes that we are after 
short-term profits, sell recommendations come quickly after we have bought the assets. In extreme cases, this may end 
up in a strategy where over a year the assets are only held for a few hours. Thus, the fact that buying and selling places 
constraints on each other must be captured by the model, and single BNs are not able to encode these constraints.

The example of the trader is really a simplification of a more complex process known as algorithmic trading, which we 
will describe in more detail in the coming section. Our primary intention is to use GBNs as part of algorithmic trading, 
however for clarity, we will sometimes fall back to the more simple view of a single trader in this paper.

1.1. Algorithmic trading

Formally, the process we intend to model is part of a larger process commonly referred to as algorithmic trading. Al-
gorithmic trading can be viewed as a process of actively deciding when to own assets and when to not own assets, so as 
to get better risk and reward on invested capital compared to holding on to the assets over a long period of time. At the 
other end of the spectrum is the buy-and-hold strategy, where one owns assets continuously over a period of time without 
making any decisions of selling or buying during the period.
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