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Bayesian networks are one of the most widely used tools for modeling multivariate 
systems. It has been demonstrated that more expressive models, which can capture 
additional structure in each conditional probability table (CPT), may enjoy improved 
predictive performance over traditional Bayesian networks despite having fewer parameters. 
Here we investigate this phenomenon for models of various degree of expressiveness on 
both extensive synthetic and real data. To characterize the regularities within CPTs in terms 
of independence relations, we introduce the notion of partial conditional independence 
(PCI) as a generalization of the well-known concept of context-specific independence (CSI). 
To model the structure of the CPTs, we use different graph-based representations which 
are convenient from a learning perspective. In addition to the previously studied decision 
trees and graphs, we introduce the concept of PCI-trees as a natural extension of the CSI-
based trees. To identify plausible models we use the Bayesian score in combination with 
a greedy search algorithm. A comparison against ordinary Bayesian networks shows that 
models with local structures in general enjoy parametric sparsity and improved out-of-
sample predictive performance, however, often it is necessary to regulate the model fit 
with an appropriate model structure prior to avoid overfitting in the learning process. The 
tree structures, in particular, lead to high quality models and suggest considerable potential 
for further exploration.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since its introduction nearly three decades ago, the class of Bayesian networks has become a well-established tool 
for many purposes of probabilistic inference. Conditional independence (CI), which is the central probabilistic concept of 
Bayesian networks, allows a modular and low-dimensional parametrization of a potentially very high-dimensional mul-
tivariate system, in terms of conditional probabilities usually specified by conditional probability tables (CPTs). Still, the 
CI-based dependence structure may in certain situations be unnecessarily coarse, resulting in an inefficient representation 
of the underlying distribution in the sense that unnecessary parameters need to be learned and retained. This phenomenon 
has been recognized by numerous authors [3,8,10,12,21,22] who have introduced local structures in order to capture regu-
larities within the CPTs of a Bayesian network. Additionally, the related model classes Bayesian multinets [14], probabilistic 
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decision graphs [16], and chain event graphs [1,11,25] have also been developed in the pursuit of modeling asymmetric 
dependence structures that cannot be explicitly captured by traditional Bayesian networks.

One of the most widely known local restrictions is based on the notion of context-specific independence (CSI) which was 
formalized by Boutilier et al. [3]. Compact representations of such constraints have been obtained through CSI-trees [3,12], 
parent contexts [22], and labeled directed acyclic graphs [21]. In this work, we further generalize CSI to partial conditional 
independence (PCI) in order to obtain sound local restrictions that lead to more expressive CPT-structures which still follow 
an underlying structure. Due to computational advantages, we focus here on tree-based structures. In particular, we show 
that CSI-trees can easily be extended to also capture certain PCIs in an efficient way.

The role of structured CPTs in model learning has previously been investigated by numerous authors [5,8,10,12,21] and 
the results suggest it can have a positive effect on the predictive performance of the inferred models. The reason for this 
is that the increased flexibility, gained by modeling the CPTs separately, allows a model to better emulate an underlying 
distribution without inducing redundant parameters. As a result, a reduced number of parameters leads to a more stable 
estimation of the model distribution. Still, a negative aspect is a vastly increased model space making the already difficult 
task of model learning even more challenging. One of the key reasons to why structured CPTs are such a convenient add-on 
from a learning perspective is that popular model selection criteria such as the Bayesian score can still be evaluated in 
closed form [8,12]. For this choice of score, it is not uncommon to assume a uniform prior over the model space, however, 
Pensar et al. [21] noticed that this may result in dense models with poor out-of-sample performance when the data are
generated from an actual Bayesian network. Here we investigate this particular phenomenon as well as the overall effect of 
structured CPTs of different degrees of expressiveness in extensive numerical experiments covering both synthetic and real 
data.

The remainder of this article is structured as follows. In the next section we define various forms of local independence 
and consider their representation in terms of local graphs. Section 3 presents a Bayesian scoring method for networks with 
structured CPTs. In addition, the section introduces a greedy search algorithm for identifying high-scoring models that use 
PCI- and CSI-based trees as well as decision graphs. The penultimate section presents results from extensive numerical 
experiments with both real and synthetic data. The last section provides further remarks on our findings and suggests 
several venues for further research on learning and use of local partial independence.

2. Local partial independence in Bayesian networks

We begin by introducing the following notation. We consider a set of discrete stochastic variables X = {X1, . . . , Xd} in-
dexed by V = {1, . . . , d}. Each variable X j takes values from a finite set of outcomes X j . For a subset S ⊆ V , we denote the 
associated set of variables by X S = {X j} j∈S and the joint outcome space is given by the Cartesian product XS = × j∈SX j . 
The cardinality of an outcome space XS is denoted by |XS |. We use a lowercase letter xS to indicate that the correspond-
ing variables have been assigned a specific joint configuration in XS . Accordingly, we use p(X S) to denote a probability 
distribution over X S whereas p(xS ) denotes the probability of the variables being assigned a specific configuration.

2.1. Partial independence

We now proceed to formally define and discuss different classes of independences that can explain interactions, or the 
lack thereof, between variables. The most fundamental statement of independence is described by conditional independence.

Definition 1 (Conditional Independence (CI)). Let A, B , C be three disjoint subsets of V . We say that X A is conditionally 
independent of XB given XC if

p(xA | xB , xC ) = p(xA | xC )

holds for all (xA, xB , xC ) ∈XA ×XB ×XC whenever p(xB , xC ) > 0. This is denoted by

X A ⊥ XB | XC .

If C = ∅, then X A ⊥ XB is reduced to marginal independence (MI) between the two sets of variables.

A CI statement is global in the sense that it holds throughout the outcome space of the involved variables. In practice, 
it implies that the knowledge of XC renders the information given by XB irrelevant when considering the conditional 
distribution of X A given XB and XC . The concept of Bayesian networks, or graphical models in general, is based on the 
notion of CI since it allows a decomposition of a network into smaller more manageable parts. Still, there are situations 
where CI alone can be unnecessarily restrictive for a model to efficiently capture the relationships between variables in 
real-world phenomena. For this reason, numerous authors [3,8,10,14,21,22,25] have introduced independence statements 
that only hold in parts of the outcome space, or in a certain domain. In an attempt to cover all such approaches, we now 
introduce the notion of partial conditional independence as an extension of the now well-established concept of CSI.

Definition 2 (Partial Conditional Independence (PCI)). Let A, B , C be three disjoint subsets of V . We say that X A is partially 
conditionally independent of XB in the domain DB ⊆XB given the context XC = xC if
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