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We study quantitative information flow, from the perspective of an analyst who is 
interested in maximizing its expected gain in the process of learning a secret, or settling 
a hypothesis, represented by an unobservable X , after observing some Y related to X . In 
our framework, learning the secret has an associated reward, while the investigation of the 
set of possibilities prompted by the observation has a cost, proportional to the set’s size. 
Approaches based on probability coverage, or on trying a fixed number of guesses, are 
sub-optimal in this framework. Inspired by Bayesian decision theory, we characterize the 
optimal behavior for the analyst and the corresponding expected gain (payoff) in a variety 
of situations. We argue about the importance of advantage, defined as the increment in 
expected gain after the observation if the analyst acts optimally, and representing the value 
of the information conveyed by Y . We characterize advantage precisely in a number of 
special but important instances of the framework. Applications to cryptographic systems 
and to familial DNA searching are examined.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Broadly speaking, we refer to quantitative information flow (qif) as the measurement of the quantity of information 
flowing from a unobservable random variable X to an observable Y . When expressing information as Shannon entropy [14], 
this quantity is just mutual information, that is, the difference between the prior and conditional entropy of X .

Computer scientists and statisticians have considered qif from different perspectives. In the context of computer security,
qif measures expected leaks in a probabilistic system, revealing part of the secret X after some Y is observed. For a statis-
tician, qif corresponds to the expected reduction in uncertainty as the reward for an observation. Attackers, experimental 
designers and defenders are just few of the very different names assumed by the actors playing in this scene. Here, we take 
a somewhat neutral perspective, and simply refer to the analyst as someone who can expect a net gain from conditioning 
X on Y , in a scenario involving a cost proportional to the size of the set of possible guesses, and a reward associated with 
learning the secret.

In the field of quantitative security, Smith [29] has recently considered the problem of providing an adequate qif measure 
for a scenario where an analyst is limited to a single guess on the candidates for the secret. An atm withdrawing a credit 
card after two failed attempts at guessing the pin illustrates the case. In this context, mutual information, which considers 
the global uncertainty about X before and after observing Y under a − log scale, was found to be inadequate as a measure 
of a qif: in fact, the analyst’s guess is now just the mode of X , so his concern is only about V (X) = maxx p(x) and V (X |Y ) =
E y[maxx p(x|y)], named vulnerability and conditional vulnerability of the system, respectively. Mimicking Shannon entropy, 
Smith used vulnerability on the − log scale, thus obtaining an instance of Renyi’s entropy called min-entropy.
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In the present paper, we follow a more general approach to qif, stemming from the tradition of Bayesian decision theory, 
as for example expounded in [17]. The idea is to introduce, for the problem at hand, costs associated with possible actions 
and a reward for learning a secret; then to derive the optimal analyst’s action, that is, the one maximizing the overall 
expected gain. An action is just a set of possibilities that the analyst should test, or somehow further, in order to (hopefully) 
learn the secret, given some observable evidence. Min-entropy corresponds to the case where the reward and the costs are 
fixed in such a way that there is no advantage to go on testing beyond the first, most likely possibility.

In the paper, we first define a general setting from which a gain function and a qif measure are derived (Section 2). 
A central role is played by advantage, denoted A(X; Y ): the difference in expected gain before and after the observation, if 
the analyst plays an optimal action. This represents the value, for the analyst, of the information that Y conveys about X . 
We then specialize the analysis by considering a fixed reward α coming from learning the secret and a unit cost for each 
undertaken attempt (Section 3). In this setting, we derive the optimal behavior for the analyst and characterize the resulting 
advantage. The behavior is shown to be more effective than both a k-tries approach with a fixed k, and the behavior based 
on trying guesses up to reaching a fixed probability coverage. Our results are then specialized to the important case of a 
non-informative (uniform) prior on the secrets, possibly in the presence of a symmetric or deterministic system (Section 4). 
In particular, when the reward coming from the secret equals precisely the cost of learning the secret for sure, we establish 
that the optimal analyst’s behavior essentially corresponds to the one derived from the likelihood ratio criterion. We also 
consider the maximum advantage that can be obtained over all prior distributions, which is important in security contexts, 
that is capacity. We characterize capacity almost completely in the case of deterministic channels. We then examine a few 
applications of the proposed framework, concerning cryptographic systems and the analysis of forensic databases for familial 
DNA searching (Section 5). Discussion of further and related work concludes the paper (Section 6). Some detailed proofs 
have been confined to a separate appendix.

2. Setup

We let X and Y be finite, nonempty sets of secrets and observables, respectively. A conditional probability matrix pY |X ∈
[0, 1]X×Y defines the behavior of the system under observation, with p(y|x) denoting the probability of the observation 
y when the secret is x. In the terminology of Information Theory, pY |X represents the channel through which information 
about the secret flows. A prior probability p X on X is assumed; we will drop the index X whenever X is clear from the 
context. p X and the channel matrix pY |X together give rise to a joint probability distribution on X × Y , hence to a pair 
(X, Y ) of input–output random variables, as expected. In many specific contexts, X and Y are not immediately related to 
one another, but we assume it is possible for the analyst to marginalize out all the unobserved r.v.’s in the system, apart 
from X . Therefore, both the prior and the conditional probability matrices are assumed to be known to the analyst. We will 
make freely use of such notational shorthand as p(y) for Pr(Y = y), p(x|y) for Pr(X = x|Y = y), and so on, whenever no 
ambiguity arises as to the underlying random variables and distributions.

Let W be a finite, nonempty set of actions the analyst can take, possibly after observing Y . Undertaking a certain action 
under a given state of the world/secret induces a (possibly negative) gain for the analyst, according to a given gain function
g : X × W → R. The expected gain under p X and w ∈ W and the maximal expected gain under p X are defined respectively 
as follows:

G(X; w)
�= E[g(X, w)] =

∑
x

g(x, w)p(x) (1)

G(X)
�= max

w∈W G(X; w) . (2)

When notationally convenient, we shall use G(X; w) and G(X) interchangeably with G(p; w) and G(p), respectively, thus 
identifying X by its distribution p X . In (2), a w ∈ W achieving the maximum is called a Bayes action. By w∗(p) we indicate 
a Bayes action, arbitrarily chosen if there is more than one. If no ambiguity arises about p, we abbreviate w∗(p) as w∗ .

For y ∈Y , let p(·|y) denote the posterior probability distribution on X given Y = y, whenever such an event has nonzero 
probability, and by G(X |y) = G(p(·|y)) the corresponding gain. The posterior maximal expected gain, advantage (under p X ) 
and capacity of the system are given by:

G(X |Y )
�= E y[G(X |y)] =

∑
y

p(y)G(X |y) (3)

A(X; Y )
�= G(X |Y ) − G(X) (4)

C
�= sup

p X

A(X; Y ) (5)

where in (3) it is understood that the sum runs over y’s of positive probability. General and somewhat standard results 
about expected gain and advantage are the following. For the sake of completeness, we report their proofs in Appendix A. 
We let P be the set of probability distributions on X , seen as a subset of R|X | .
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