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a b s t r a c t

We describe the basic ideas of the theory of approximate reasoning and indicate how it
provides a framework for representing human sourced soft information. We discuss how
to translate linguistic knowledge into formal representations using generalized constraints.
We consider the inference process within the theory of approximate reasoning and intro-
duce the entailment principle and describe its centrality to this inference process. Next we
introduce the idea of doubly uncertain statements such as John’s friend is young. In these
statements there exists uncertainty both with respect to value of the age, young, and the
object associated with the age, John’s friend. We suggest a method for representing these
complex statements and investigate the problem of making inferences about specific
objects.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Zadeh [1–4] introduced the fuzzy set based theory of approximate reasoning (AR) and the related generalized theory of
uncertainty (GTU) to provide a technology for manipulating human sourced linguistically expressed soft knowledge. Useful
introductory surveys on the theory of approximate reasoning can be found in [5,6]. Many applications based on these ideas
can be found in the literature [7–12]. An important component of this framework is its ability to represent imprecise and
uncertain information using the concept of a generalized constraint statement. A typical example of such a statement is
Johns is near the river, where we are assigning the variable John’s location the value near the river. In this statement uncer-
tainty is associated with the term near-river, the value of the variable. Here we shall extend the capability of this framework
by considering an additional source of uncertainty in the generalized constraint statement, uncertainty with respect to var-
iable itself. Formally the generalized constraint statement is of the form Attribute(Object) is Value. In the preceding the attri-
bute is location, the object is John and the value is near-river. In this work we shall consider situations in which there exists
some uncertainty with respect to object itself as exemplified by the statement a tall men is near the river. Here the attribute
is still location and the value is still near-river but the object is an uncertain object, a tall men. Our goal here is to try to rep-
resent these doubly uncertain constraints and infer any information we can about specific objects, such as John’s location.
We note that closely related issues have considered within the area of probabilistic databases [13].

2. The theory of approximate reasoning

To provide a technology for manipulating human sourced linguistically expressed soft knowledge Zadeh introduced the
fuzzy set based theory of approximate reasoning (AR) and the generalized constraint language [1–4]. Fundamental to this
approach is the realization that much of our knowledge can be viewed as a constraint on some explicit or implicit variable.
The process introduced by Zadeh for manipulating this type of knowledge can be seen to involve four basic steps. The first
step is the translation of the available knowledge into the representational language of the theory of approximate reasoning
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suggested by Zadeh. This can be seen as a step of translation. In this step each of the pieces of knowledge are translated into
constraints. The second step involves the fusing of the individual pieces of knowledge to form a global constraint that con-
stitutes our knowledge base. The third step involves the making of inferences in response to some objective. The final step is
one of retranslation. This step involves taking the inferred knowledge, which is a constraint expressed in mathematical form
and turning it into some natural language statement that is easier for a human to understand.

Central to this approach is the task of translation. Here we take knowledge convert it into constraints on some implicit or
explicit variable. Numerous recommendations have been suggested for accomplishing this translation [4].

An important class of constraints are possibilistic constraints. These constraints arise from statements such as John is tall.
Here we are imposing some constraints on the possible age of John. At a formal level if V is a variable with a domain of dis-
course X then the formal representation of a possibilistic constraint is

V is A:

Here A is a fuzzy subset of the domain X. Often A is a representation of some linguistic value associated with V. The effect of
this constraint is to induce a possibility distribution P over X where PðxÞ ¼ AðxÞ is the possibility that x is the value of V. Here
A(x) is the membership grade of x in A.

Two special cases of V is A are worth noting. The first is the case where A(x) = 1 for all x 2 X, here A = X. In this case we
know nothing about V. Another special case is where A(x⁄) = 1 and A(x) = 0 for x – x⁄. In this case we have that V = x⁄, it equals
the value x⁄.

We shall say a fuzzy set is normal if there exists at least one element with membership one. If this is not the case we say it
is subnormal. In the framework of Zadeh’s theory of approximate reasoning subnormality is some indication of conflict or
inconsistency. An extreme case of this occurs when A = Ø, the null set.

One can consider constraints involving multiple variables such as (V, U) is H. If X is the domain of V and Y the domain of U
then H is a fuzzy subset of X � Y. Here we refer to (V,U) as a joint variable. We note that propositions involving joint variables
are simultaneously constraining both variables. Thus the statement (V,U) is H is telling us that H(x, y) is the possibility that
simultaneously V is x and U is y. More generally we can consider constraints involving joint variables having any number of
atomic variables such as (V1, V2, V3, . . . ,Vn) is H.

At times it is useful to extend a proposition involving a single variable to one involving a joint variable. Assume we have
the proposition V is A we can naturally extend it to one involving a joint variable (V, U) by simply replacing V is A by V is A and
U is Y. The statement U is Y, where Y is the domain of U is essentially saying U can be anything. In this case we get (V, U) is G
where G(x, y) = Min[A(x), Y(y)] = A(x). A significant implication here is that any two propositions can always use expressed in
terms of the same joint variables. This can be done by extending each of the propositions with the variables from the other
proposition.

Zadeh [1] discusses an approach for projecting the value of a constituent variable from a joint variable. Assume we have
(V, U) is H where H is a fuzzy subset of X � Y. From this we can obtain V is F where F(x) = Maxy[H(x, y)] and U is E where
E(y) = Maxx[H(x, y)]. We denote F as the ProjV[(V, U) is A] and E is ProjU[(V, U) is H]. We say the proposition (V, U) is H is clean
in V if F(x) = 1 for all x. Here F = X, H has no individual information about V.

Given a proposition V is A one may be interested in the truth of some other proposition such as V is B. Consider that we
know John is in his twenties. We can clearly answer no to the question is John over 50. We can similarly clearly answer yes to
the question is John older than 15. But the question is John over 25 is not directly answerable. It is possibly true but not nec-
essarily true. In the face of uncertain information many questions do not have clear answers.

In the light of this two surrogate measures have been introduced [14]. The first is the measure of possibility defined as
Poss[V is BjV is A] = Maxx[A(x) ^ B(x)]. The second is the measure of certainty (or necessity) Cert½V is BjV is A� ¼
1� Poss½V is BjV is A�. It is well known that if A is normal that Poss[V is BjV is A] P Cert[V is BjV is A].

In the following we shall find it at times convenient to use the generic formulation M is H to indicate a possibilistic con-
straint in which we have a joint variable.

In Zadeh’s approximate reasoning each piece of knowledge (proposition) P induces a constraint C expressed in the lan-
guage of AR, symbolically we denote this as P) C. When we have multiple pieces of knowledge, {P1, . . . ,Pq}, the combined
constraint induced by these is the conjunction of their individual constraints, if Pi) Ci then {P1, . . . ,Pq}) C1 \ C2� � �\ Cq. Thus
if we have P1) V is A1, P2) V is A2 and P3) V is A3 then {P1, P2, P3}) V is H where H = A1 \ A2 \ A3, H(x) = Min[A1(x), A2(x),
A3(x)].

In the case where the pieces of knowledge are about different variables P1) V1 is B1, P2) V2 is B2 and P3) V3 is B3 than
{P1, P2, P3})M is H where M = (V1, V2, V3) and H is a fuzzy subset over X1 � X2 � X3, the cartesian product of the domains of
the Vj such that

Hðx1; x2; x3Þ ¼Min½A1ðx1Þ;A2ðx2Þ;A3ðx3Þ�:

More generally if P1, . . . ,Pq are a collection of propositions each inducing a constraint Mi is Hi where Mi is a collection of
variables then the collection {P1, . . . ,Pq} induces the constraint M is H, where M = [iMi and H = \iHi. Thus the fusion of multi-
ple sources of information results in a constraint on the union of all the variables and the conjunction of their values.

We make the following observation. Assume {P1, . . . ,Pq} is a set of propositions that induces the constraint M is H. Let
{Pp(1), . . . ,Pp(r)} be any subset of {P1, . . . ,Pq}. Assume {Pp(1), . . . ,Pp(r)} induces the constraint, M is G. Then we can easily show
that H # G. We recall H # G if for each element x in the domain of M we have H(x) 6 G(x).
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