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A B S T R A C T

In this paper generator coherency analysis of power system is investigated via some signal processing techniques.
Sensor data analysis here designed is based on the fusion of advanced signal processing techniques for sensing-
based coherency identification, including k-means and fuzzy k-means clustering, agglomerative hierarchical
cluster tree, and Independent Component Analysis (ICA). Detailed results are presented and discussed in order to
prove the effectiveness of the techniques and carry out a comparative assessment.

1. Introduction

The large scale deployment of advanced sensor networks for ac-
quiring and processing synchronized and spatially-distributed mea-
surements is considered one of the most important prerequisite for
improving the reliability and the security of large-scale interconnected
power systems. This has stimulated the conceptualization of Wide Area
Measurement Systems (WAMS), which process phasor data acquired
from key buses by Global Positioning System (GPS)-synchronized sen-
sing devices, called Phasor Measurement Units (PMUs) [1]. The large
stream of time-synchronized phasor measurements acquired by the
PMUs, if properly processed and integrated with other traditional sen-
sors (such as remote terminal units, digital fault recorders, etc.), can be
adopted to enhance the power systems observability. This improves the
“situational awareness” of Transmission System Operators (TSOs) by
enabling advanced proactive functions, such as system integrity pro-
tection schemes, adaptive protection, and dynamic on-line security
analysis (DSA) [2]. These applications could play a strategic role in
modern electrical transmission networks, which are frequently pushed
to operate very close to their stability limits.

The identification of the coherent group of generators, here referred
as Generation Coherence Analysis – GCA, represents strategic and va-
luable information [3]. In this context, the term coherent means that,
after the disturbance onset, the generators exhibit similar rotor angle
swing curves, which are so close to each other that they can be assumed
to oscillate together [4]. One fundamental remark in coherency analysis
is that the formation of coherent groups depends on both the nature and
location of the disturbance [5].

Several methods have been proposed in literature for GCA, which
can be classified in two main categories: model-based methods and
measurement based methods. Model-based methods mainly rely on the

availability of a power system dynamic model, which is typically line-
arized around the current operating point. Although the adoption of
these methods has been widely explored in the power system literature,
their real-time deployment on large and interconnected power systems
is highly challenging due to their huge computation demand. Moreover,
they need detailed information on the modeling parameters of each
power system component, which is not readily available, or affected by
large uncertainties.

To overcome these limitations, the adoption of measurement-based
coherency identification methods has been proposed in the literature
[6]. These approaches try to extract actionable knowledge from the grid
sensors data streaming, such as generator rotor angle and speed, bus
voltage magnitude and phase.

The modern literature on measurement-based GCA is vast and
[7–11] outlines the main contributions, the open problems, and the
research challenges characterizing this emerging research domain.

The analysis of these papers reveals that, although several signal
processing based techniques have been proposed for GCA, an experi-
mental assessment of their performances on a real and complex op-
eration scenario is still at its infancy [12].

Armed with such a vision, in this paper generator coherency ana-
lysis of power system is investigated via some signal processing tech-
niques. Sensor data analysis here designed is based on the fusion of
advanced signal processing techniques for sensing-based coherency
identification, including k-means and fuzzy k-means clustering, ag-
glomerative hierarchical cluster tree, and Independent Component
Analysis (ICA). Detailed results are presented and discussed in order to
prove the effectiveness of the techniques and carry out a comparative
assessment.

The remainder of the paper is organized as follows. Section 2 col-
lected the main literature contributions regarding GCA. In Section 3 the
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theoretical foundations of the adopted sensing-based coherency iden-
tification algorithms are analyzed. In Sections 4 the main results are
presented and discussed. The conclusive remarks and the future de-
velopments are summarized in Section 5.

2. Related works

GCA is one of the most fundamental tool for implementing dynamic
equivalencing of power systems [13]. Thus, it has attracted large re-
search efforts aimed at defining effective methodologies for identifying
coherent areas in interconnected power systems.

In particular, GCA in coherency based DE techniques has been tra-
ditionally addressed by deploying linearized power system models.
These solution techniques are very straightforward but, as outlined in
[6], they could be not suitable for GCA of large-scale power systems in
the presence of critical disturbances, due to their inability to describe
complex non-linear system dynamics. This has limited their deployment
in power system control centers, and stimulated research for alternative
solutions based on more advanced modeling techniques. In particular,
the solution method proposed in [14] combines the Taylor-series ex-
pansion of the generator rotor angles at three different transient phases,
with a measure of the electrical coupling among the generators, ob-
tained by defining a distance measure based on the system admittance
matrix. According to this approach, the generators’ coherency is iden-
tified by analyzing the epsilon decompositions of the power flow
equations Jacobian matrix. This makes the proposed approach mathe-
matically straightforward, and its algorithmic complexity linear. On the
other hand it requires the precise knowledge of detailed parameters of
the power systems under analysis, which are very difficult to estimate,
and are affected by large uncertainties [15].

To overcome this limitation, more advanced solution methodolo-
gies, based on signal processing techniques, have been proposed in the
literature. In particular, in [16] a line vulnerability index, which is
obtained by processing the post-fault line transient potential energy and
the bus voltage magnitudes, is adopted to classify coherent areas in
large-scale power transmission systems. The same problem has been
solved in other papers by means of spectral analysis techniques, which
include: Fast Fourier Transform (FFT) of the generator rotor angles
expanded via Taylor series [17], Fourier analysis of generator speed
measurements [18], Hilbert Huang Transform of the phase differences
among inter-area oscillations and swing curves [19], normalized spec-
tral clustering algorithm and ICA of the generator speed and bus angle
signals [20,21], wavelet phase difference analysis of low frequency
electromechanical oscillations [22] and multiflock-based analysis of the
generator frequencies and phases [23].

Recently, attention has been given to pattern recognition techniques
based on neural networks [24] and clustering techniques some of which
are presented in Section 3. Although the performance of these methods
have been successfully validated on some experimental test-beds, their
deployment on realistic transmission systems is still in its infancy, and
needs to be researched [25]. In this context, several open problems
need to be fixed including the improvement of the computing effi-
ciency, the enhancement of the algorithm scalability, and the com-
plexities in managing large data-sets. These issues are particularly re-
levant in the context of the ENTSO-E Continental synchronous area,
where the complexities deriving by the interconnection of the national
power systems, the need for accurate monitoring of the strategic energy
corridors.

In trying to address these issues, generator coherency analysis of
power system is investigated via some signal processing techniques. The
main idea is to extract actionable intelligence from measured data-sets
by properly combining multiple signal processing techniques, such as k-
means clustering techniques, agglomerative hierarchical cluster tree
and ICA. The outcomes of this measurement-based coherency identifi-
cation paradigm is expected to match with a model-based coherency
identification algorithm (e.g. directional cosine [4]), but with a lower

computational complexity. This important feature makes the proposed
solution particularly suitable for an on-line application.

3. Measurement-based coherency identification algorithms

The measurement based coherency identification algorithms here
analyzed are presented in the following with related mathematical
framework.

3.1. K-means

K-means is the most simple and popular unsupervised learning al-
gorithm able to deal with clustering problems. The aim of the method is
to classify an ensemble of measurements, as the case of the generator
rotor measurements (i.e. rotor angle or speed) in a certain number of
clusters, k, fixed a priori. Each cluster is defined by a centroid properly
placed in the clustering space: different centroid locations imply dif-
ferent results. One approach to initialize the algorithm is to position
each centroid as much as possible far away from each other. Then, each
point belonging to a given measurements ensemble has to be associated
to the nearest centroid. At this point the new k centroids can be updated
as barycenters of the clusters resulting from the previous step and a new
binding has to be performed among the points of the measurements
ensemble and the nearest new centroids. The procedure is iterated until
no more change of centroids position is obtained. In mathematical
terms, given an ensemble of observations x=[x1, x2, …, xn]T, i.e.
generator rotor measurements, where each of them is a d-dimensional
real vector, k-means clustering collects the n observations into k (≤n)
sets, S={S1, S2,…, Sk} by minimizing the following objective function:
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whereas ‖x− μj‖ is a properly chosen measure of distance (e.g.
Euclidean or L1 distance etc.), among n data measurements x and the
cluster center μj. Each individual xp in x must be assigned to only one
cluster. Standard algorithm for solution of (2) is proposed by Lloyd in
[26] and consists in two steps. Starting from an initial guess about k
means, the algorithm assigns each observation to the cluster whose
mean, mk, yields the least within-cluster sum of squares:
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Each xp is hence assigned to only one element of S(t) while the new
means, to be the centroids of the observations in the new clusters, are
updated as follows:
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The main drawbacks of the method are that (i) there is no guarantee
of convergence to a global minimum of the (1) and (ii) the results are
significantly sensitive to the initial randomly selected cluster centers.
By running the algorithm multiple times and by recourse to the physical
knowledge about the investigated power system both effects can be
mitigated.

3.2. Fuzzy k-means

The highlighted mathematical framework suggests how k-means
could be a good potential candidate for extension to work with fuzzy
theory. In particular, while in k-means algorithm each observation, xp,
cannot be assigned to more than one cluster, in fuzzy k-means this can
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