
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Clustering-based novelty detection for identification of non-technical losses

Joaquim L. Viegasa,⁎, Paulo R. Estevesb, Susana M. Vieiraa

a IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
b PowerData, Portugal

A R T I C L E I N F O

Keywords:
Clustering
Data mining
Detection of non-technical losses
Electricity theft
Novelty detection
Smart metering

A B S T R A C T

The reduction of non-technical losses is a significant part of the total potential benefits resulting from im-
plementations of the smart grid concept. This paper proposes a data-based method to detect sources of theft and
other commercial losses. Prototypes of typical consumption behavior are extracted through clustering of data
collected from smart meters. A distance-based novelty detection framework classifies new data samples as
malign if their distance to the typical consumption prototypes is significant. The proposed method works on the
space of four different indicators of irregular consumption, enabling the easy interpretation of results. A use case
based on real data is presented to evaluate the method. The threat model considers sixteen different possible
types of changes in consumption pattern that result from non-technical losses, including attacks and defects
present since the first day of metering. The proposed clustering-based novelty detection method for identifica-
tion of non-technical losses, using the Gustafson-Kessel fuzzy clustering algorithm, achieves a true positive rate
of 63.6% and false positive rate of 24.3%, outperforming other state-of-the-art unsupervised learning methods.

1. Introduction

In electrical grids, non-technical losses (NTLs) are equal to the dif-
ference between electricity supplied and electricity paid for, subtracting
the energy lost through heat in lines, transformers and other equip-
ments. NTLs are the result of electricity theft, fraud or deficient me-
tering assets and have significant financial impact to utilities and
economies. Theft is widespread in many developing economies, such as
India, where theft has been estimated to amount to more than 1% of the
country gross domestic product (GDP) [1]. The impact of NTLs is also
significant in developed countries, in the UK electricity theft is esti-
mated at £173million every year [2], in the US it may be worth up to
$6 billion [3].

The growing proliferation of the smart grid concept and im-
plementation of advanced metering infrastructure (AMI) systems results
in grids with many digitally interconnected assets, enabling complete
remote control and monitoring. Two-way communications between
assets and utility systems have the potential to enable better grid
management. Meanwhile, this wide use of cyber-physical systems opens
the door for hacking and cyber-attacks.

Usually, the reported sources of NTLs are fraud through meter
manipulation, tapping distributions lines and non-payment [4–6]. De-
ficient meters and utility systems that compromise measurements and
collusion with utility employees can also result in losses. The use of
smart meters (SMs) for remote control and consumption data collection

widens the attack surface for electricity theft [7,8]. Through meter
hacking, manipulation and spoofing of communication individuals can
enact false data and bad data injection (BDI) attacks [9].

Multiple data-based classification and estimation techniques have
been tested to detect NTLs, such as state estimation [10], clustering
[11], neural-networks [12], support-vector machines (SVM) [13] and
decision trees [14,15]. Some of the studies only deal with electricity
theft while other studies deal with aggregated NTLs, not being able to
pin-point the exact location of their source [16,17]. Multiple authors
are starting to deal with the resulting potential threats that come from
the extended attack-surface due to smart meters [7,18,19]. Recent re-
search focuses on challenges in dealing with large and imbalanced
datasets collected through smart grid assets, usually using artificial
intelligence techniques [15,20,21].

Taking into account the potential of sophisticated fraudsters and
cyber-attacks, [22,23] propose game-theoretic frameworks to deal with
electricity theft. In [18], multiple classifiers are evaluated in an ad-
versarial environment, analyzing the worst case scenario assuming at-
tackers have knowledge of the detection technique used. In [7], su-
pervised and non-supervised classification techniques are tested to
detect a synthetic consumption pattern that result from theft, achieving
best results with SVM classification.

This paper proposes a method to detect sources of NTLs in smart
grids. We focus on all types of losses that can result in changes in the
consumption data that is collected by a SM and communicated to the
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utility. Firstly, indicators of irregular consumption are computed from
the collected consumption data, representing changes in behavior or
irregularities in comparison to similar consumers. Secondly, the data of
a set of benign consumers is clustered to uncover the prototypes of
legitimate behavior, representing the different patterns of indicators
that result from normal consumption. Thirdly, the prototypes are used
in a distance-based novelty detection method. The farther away data
from an analyzed consumer is from the normal prototypes, the higher
their NTLs score is, indicating they may be stealing electricity or me-
tering equipment is malfunctioning.

We propose the use of fuzzy Gustafson-Kessel clustering (GK) to
detect consumption patterns resulting from the presence of NTLs, which
we show is well suited for the application and has not been used in the
current literature on novelty detection. A novelty detection framework
has not been used before in the field of detection of NTLs and electricity
theft. The method is tested on a use case that extends the threat models
proposed in [7,21,24]. A complete set of possible changes of con-
sumption, including sources of NTLs active from day of connection, are
considered. Results of the use case show the potential of the method,
achieving good results, out-performing other tested techniques pro-
posed in the literature to deal with equivalent data. The proposed in-
dicators enable an easy interpretation of the scores given by the de-
tection method, which contrasts to the non-transparent nature of most
techniques used in the literature.

We believe the method is well suited to be used in areas of a smart
grid where significant aggregated NTLs are detected through calcula-
tion of the difference between supplied and billed electricity. In this
case, the method can pin-point the thieving individual or faulty
equipment.

2. Threat model

The considered threat model identifies the possible attack vectors
and main system vulnerabilities related to electricity theft in smart
grids. The term attack vectors refers to the ways an individual can
maliciously affect the electricity network or the utilities systems to pay
less than the full amount they owe for the electricity they consume.
Other kinds of NTLs can also be detected using this framework, as they
also result in changes or irregularities in the consumption data sent to
the utility by the SM.

We propose a model that extends the ones presented in [7,21,24].
This paper presents an extended analysis of the attack surface, considers
false data attacks with higher complexity such as proposed in [21], and
includes cases where the losses start on the first day of consumption
data acquisition (we refer to these cases as first-day attacks).

This paper considers a smart grid environment with an AMI system,
characterized by presence of SMs at all the consumption endpoints. SMs
have advanced communication capabilities and automatically send
consumption data to the utility. The attack surface is said to be in-
creased with the use of SMs. New cyber and data attack/vulnerabilities,
such as the possibility of sending false readings, appear with the use of
these equipments [7,25,26]. BDI can be used to steal electricity and
breakdown grid assets, possibly having catastrophic consequences [9].
Current literature on detection of theft and NTLs and electricity is
giving an increased importance to this issue [27–31].

The different NTLs sources and attack/vulnerability vectors are
pictured in Fig. 1. The encircled points indicate the different possible
attack vectors.

NTLs can be detected through the analysis of metering data. The
proposed method deals with the types of NTLs that result in a change or
irregular consumption pattern (e.g. if a consumer connects an equip-
ment to a distribution line their consumption is lowered). Table 1 lists
the different attack/vulnerability vectors, scenarios and expected
changes in metered consumption data. Column Point indicates the re-
lated point in Fig. 1. The first-day attack scenario is considered. Note
most scenarios are expected to result in a variation or irregularity of the

metered consumption data.
Scenarios relating to billing were not listed because they result in

changes done after the processing consumption data collected by SMs.
They include non-payment (point 4), collusion with utility employees
(points 5 and 6), cyber attacks to commercial systems and erroneous
billing (point 7).

Cases resulting in a constant reduction of consumption, such as the
disconnection of a meter or use of a strong magnet to interfere with it,
can be detected through straightforward methods such as slope analysis
and rule-based systems [14,32]. If the attackers are highly resourceful,
they may send false consumption data (e.g. BDI) which is seemingly
legitimate [7,18]. In an adversarial environment the attacker evolves
trough time and information on past attacks may not be useful to pre-
vent future ones [18]. Also, if the attack is made from the day of con-
nection to the grid (first-day), no reduction or change in consumption
can be detected, only the comparison to similar consumers is effective
[33].

As past examples of theft may not be suitable, different types of
attacks are generated to test the proposed detection technique. Also,
according to [7,8,10], real data samples of electricity fraud are not
easily available as the smart grid is not fully implemented yet. Six of the
attacks are the ones presented in [7]. The two other complex attacks are
proposed by [24]. One deals with the manipulation of data to shift a
significant amount of consumption from peak hours to lower valley
hours, taking advantage of two-part and three-part tariffs that are
higher at peak time. The other considers a especially resourceful thief,
manipulating their consumption data to look completely legitimate
while lowering their total bill. Each one of the 8 types of attacks is
considered in two versions, starting in a day posterior to the first day of
consumption data and starting in the first day, resulting in a final set of
16 attack types. h1 to h8 are attacks that start later than the day the
metering starts and h10 to h80 represent the first-day versions of the
attacks.

1. Random constant reduction of consumption (h1 and h10 for the zero
day scenario);

2. Drop of consumption to zero during a random period of the day (h2

and h20);
3. Random hourly reduction of consumption (h3 and h30);
4. Random hourly consumption pattern with reduced average con-

sumption (h4 and h40);
5. Constant hourly consumption equal to the average (h5 and h50);
6. Reversed hourly consumption: switch consumption of hour 1 with

hour 24, etc. (h6 and h60);
7. Shift of consumption from peak hours to the rest of the day (h7 and

h70);
8. Shift the consumption data to the one of a legitimate consumer with

lower electricity needs (h8 and h80)

The following notation is adopted: we work with a smart metering
dataset M with N consumers. mi are the meter consumption readings
from consumer i. The dimension of mi is = ×n r nd where nd is the
number of days and r is the number of consumption readings per day. In
this work 24 readings per day are used (one per hour), the simplified
notation is: mi

d t, is the consumption in day d for hour t.
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d,1 ,2 ,24 is the 24 h vector of metered data of consumer

i in day d.
To compare similar consumers, a dataset of consumer character-

istics S is used. si are the characteristics of consumer i with dimension p
equal to the number of characteristics. The following equations describe
the way an attack starting on day d by consumer i affects their con-
sumption data. These are used to generate the synthetic attacks used to
test the proposed method. μ represents the average function.
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