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A B S T R A C T

This paper presents a new method for the assessment of the process noise covariance matrix for three-phase
dynamic state estimation in unbalanced active distribution networks which operate under normal conditions.
The assessment is done in order to minimize the estimation error. The proposed assessment method, based on
minimization of a particular cost function, enables the a priori assessment of covariance matrix by extracting
information from previously observed measurements, without the need to simulate the true state of the system.
The method was applied on two commonly used Kalman filter based estimation algorithms in nonlinear systems:
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). A comparative analysis was performed be-
tween two different cost functions based on average root mean square of innovations and maximum likelihood
technique. Also, the importance of determining initial state vector and its error covariance matrix needed for the
initialization of dynamic state estimation was examined, as well as the ability of UKF and EKF to handle mea-
surement nonlinearities. The analysis was carried out and the proposed method was verified on modified IEEE
13- and 37-bus distribution test systems.

1. Introduction

The rise of distributed generation induces the increase in require-
ments for monitoring and control of distribution networks (DNs), giving
the estimation in DNs more importance. One of the problems in power
system dynamic state estimation (DSE) is non-linearity of both the
process model and the measurement model. Different filtering methods
are proposed to handle this problem. Most widely used methods are
first order Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF), which present extensions to the classical Kalman filter.

The DSE has been particularly explored at power generation and the
transmission network level [1–4]. However, the DSE solutions applic-
able at this level cannot be applied to DN due to its high level of im-
balance and high R/X ratio. Regardless of this fact, the DSE of DNs has
not yet been investigated extensively.

Parameter identification for process model and measurement model
is responsible for proper behavior of state estimators based on Kalman
filtering. Adaptive filter tuning encompasses the estimation of initial
state vector, its error covariance matrix, process and measurement
noise covariance matrix, as well as other unknown model parameters
[5]. The influence of initialization scenario (initial state vector and its
error covariance matrix) on estimation accuracy has been poorly ela-
borated in literature. More attention has been paid to the assessment of

noise covariance matrices. Although measurement noise is relatively
easy to assess, the assessment of process noise level is a much more
challenging task.

There are four standard approaches for assessment of Kalman filter
parameters: Bayesian, maximum likelihood (ML), covariance matching
and correlation techniques [6]. Methods developed based on these
approaches commonly rely on assumptions that arise from character-
istics of the analyzed system. Results that can be achieved using a
particular method depend on how well these assumptions are met. The
ML approach combined with EKF/UKF is used in various research fields
for parameter identification of the chaotic model [7], parameterized
process noise covariance matrix [8] and process modeled with sto-
chastic differential equation [9]. Recently, Kalman filtering has been
combined with ML estimators in order to simultaneously obtain system
state and parameter estimates [10].

Numerous methods for the assessment of process noise covariance
matrix can be found in power system literature. In [11], three different
methods for covariance matrix calibration are proposed and tested in
quasi-steady-state conditions. One of the methods assumes perfect a
priori knowledge of bus injections, while other two are more realistic
and based on a posteriori knowledge of state estimates and its error
covariance matrix. However, they are not capable of tracking sudden
system changes as soon as they occur, hence prediction-error
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covariance estimation method was proposed in [2] to overcome this
drawback. The methods mentioned above rely on the assumptions that
the system dynamics can be modeled as a random walk process and that
the measurement model is linear, known and time-invariant. Random
walk is suitable when state estimation is driven by measurements with
high refresh rate, such as phasor measurement units (PMUs). Also, if a
state vector is given in rectangular coordinates, the use of PMUs can
lead to a linear measurement model, but only if conventional mea-
surements of branch/bus power flows/injections are excluded. A more
realistic approach is made in [12], where measurements of active/re-
active bus power injections are added in a simulated DN.

The implementation of PMUs is quite uncommon in today’s DNs
[13]. The first operational system that provides low-latency real-time
state estimation by using PMU measurements of a real active DN is
presented in [14]. The cost should be significantly lower to enable
practical utilization of multiple PMUs in real DNs [15]. Therefore, in
this paper only conventional measurements (active/reactive branch
power flows, active/reactive bus power injections and bus voltage
magnitudes) are included in the state estimation process aimed to carry
out the analyzes concerning actual conditions in which the DN cur-
rently operates.

A new method for the assessment of process noise covariance matrix
applicable in normal operating conditions in real DNs is presented here.
The proposed method starts from a simple parametric representation of
the covariance matrix. The aim is to find a covariance matrix parameter
that minimizes the difference between the observed and predicted
measurements, in order to achieve optimal filter accuracy. For that
purpose we used three-phase dynamic state estimators based on EKF
and UKF. Cost functions based on the average root mean square error
and ML technique were examined and compared for purposes of in-
novation analysis. In addition, we studied how different initialization
scenarios affect the estimation accuracy. The method was tested on
modified IEEE 13- and 37-bus unbalanced distribution test systems with
connected distributed generators (DGs).

The paper is organized in the following order: In Section 2 system
dynamics and measurements are modeled, Section 3 describes EKF and
UKF estimation algorithms and the applied performance indices, while
Section 4 explains the proposed method for the assessment of process
noise covariance matrix in detail. Finally, the results are given in Sec-
tion 5 and major conclusions are drawn in Section 6.

2. Description of DSE model

2.1. Quasi-static process model

First step in DSE is to identify the adequate mathematical model to
describe time behavior of the system. Considering that the system state
changes steadily but slowly during normal operating conditions, state
vector transition can be satisfactorily described by a process model
consisting in the linear stochastic discrete-time equation [1]:

= + ++x F x g w ,k k k k k1 (1)

where x is ×n 1 dimensional state vector consisting of bus voltage
magnitudes and phase angles, k is time sample, F is ×n n dimensional
state transition matrix, g is ×n 1 dimensional vector associated with
the trend behavior of the state trajectory, w is ×n 1 dimensional vector
for modeling process noise (it is commonly assumed for process noise to
be white and distributed according to a Gaussian distribution with zero
mean and covariance matrix Q), and n is number of state variables for
which =n N3·2·max applies, where N represents the total number of
buses in DN (excluding slack bus). The number of state variables is
usually lower than nmax, given that the presence of single- and two-
phase laterals, as well as single- and two-phase loads is typical for DNs
[16].

The most commonly used technique for online update of matrix F
and vector g is Holt’s linear exponential smoothing method [1,17]

which involves a parametric representation of matrix F and vector g
presented by the following equations:

= +F Iα β(1 ) ,k n (2)

= + − − + −−
− −g x a bβ α β β(1 )(1 ) (1 ) ,k k k k1 1 (3)

= + −+ −a x xα α(1 ) ,k k k (4)

= − + −− −b a a bβ β( ) (1 ) ,k k k k1 1 (5)

where α and β are smoothing parameters with values between 0 and 1,
In is ×n n dimensional identity matrix, −x and +x are the predicted and
estimated state vector, respectively, a and b are ×n 1 dimensional level
and slope vector, respectively.

Generally, smoothing parameters could be updated at every time
step. If we want to increase/decrease the influence of the system state at
a current time step k on a state prediction for the next time step +k 1,
then parameter α should be set to a value as close as possible to 1/0.
The same applies to parameter β if the aim is to make the prediction
more/less affected by the trend of change of system state between two
consecutive time steps −k 1 and k.

In order to determine parameters a and b, it is necessary to have
information about the behavior of the system at points earlier in time,
which can be achieved by system monitoring.

2.2. Measurement model

The relationship between measurements and system state variables
is expressed by the non-linear stochastic equation:

= +z h x e( ) ,k k k (6)

where z is ×m 1 dimensional vector of measurements, h is ×m 1 di-
mensional non-linear vector function with at least n independent
equations in order to achieve the network observability, e is ×m 1 di-
mensional white Gaussian measurement noise vector with zero mean
and covariance matrix R and m is the total number of measurements in
DN so that ⩾m n.

In a real DN, available telemetered devices provide real-time mea-
surements of active/reactive power flows and injections, current flow
and injection magnitudes, as well as voltage magnitudes [16,18,19].
One of the major problems for distribution state estimation is a lack of
telemetered devices [18]. Thus, fictitious virtual and pseudo measure-
ments are required to improve redundancy and provide observability.
Zero power/current injection measurements in nodes with no load/DG
connected are treated as high accurate virtual measurements. Pseudo
measurements can be obtained from historical daily load profiles, his-
torical DG database or weather forecast and therefore they are char-
acterized by limited accuracy.

The measurement noise depends on the accuracy of measurement
devices, which are known for all real-time measurements. Given that
pseudo measurements are fictitious, their accuracies should be adopted
appropriately.

Standard deviation can be estimated from measurement true value
and measurement accuracy through following expression [16,20]:

=σ z Accuracy·( /300).true (7)

This approach for standard deviation calculation is only applicable to
real-time and pseudo measurements, and not to virtual measurements
( =z 0true ). It is for this reason that virtual measurements were modeled
with very small standard deviation (typical values are within the range

−− −10 104 6 [20,21]).
This information makes the measurement noise covariance matrix R

much easier to define then the process noise covariance matrix Q. If
measurements errors are mutually independent for one snapshot of
measurements, then Rk is the diagonal matrix given with:

= … …R diag σ σ σ σ{ , , , , , },k k k k l k m,1
2
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2 (8)
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