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A B S T R A C T

As the penetration of electric vehicles (EVs) increases, their patterns of use need to be well understood for future
system planning and operating purposes. Using high resolution data, accurate driving patterns were generated
by a Markov Chain Monte Carlo (MCMC) simulation. The simulated driving patterns were then used to un-
dertake an uncertainty analysis on the network impact due to EV charging. Case studies of workplace and
domestic uncontrolled charging are investigated. A 99% confidence interval is adopted to represent the asso-
ciated uncertainty on the following grid operational metrics: network voltage profile and line thermal perfor-
mance. In the home charging example, the impact of EVs on the network is compared for weekday and weekend
cases under different EV penetration levels.

1. Introduction

As the EV penetration level increases, accurate prediction of the
associated electricity consumption is required for network side plan-
ning, in particular, network asset investment, [1]. The associated un-
certainty in load is also of essential importance to the network normal
operation since it allows the network operator to leave sufficient mar-
gins during the planning stage as well as in operation. The large sample
size that is required for the uncertainty investigation justifies the con-
struction of a suitable model for detailed simulation of vehicle use
patterns. To be useful, the EV charge requirements and their timing
must reflect actual driving practice both in terms of journey length
(duration) and start and finish times, and also include the main loca-
tions at which charging can be undertaken.

Stochastic techniques lend themselves to vehicle use modelling due
to the random nature of driving patterns. Monte Carlo simulation, as a
stochastic modelling approach, is a popular choice, such as [2–6].

Detailed Markov Chain Monte Carlo (MCMC) simulation was used
to generate weekly EV patterns in [2] with half hourly resolution. The
initial states were defined assuming a Gaussian distribution for EV
characterisation, and the subsequent instances were produced based on
the Markov Chain transition probabilities using Monte Carlo simula-
tion. One infeasible assumption in this particular simulation was that
the driving period per journey was fixed to be 30min, which is due to
the lack of self-transition status of driving, and this limits the genera-
tion of continuous vehicle driving states.

Iversen et al. also employed Markov Chain models for describing
vehicle diurnal driving patterns in [3], including the discrete time
Markov model, where the size of the state transition matrix was pro-
portional to the time resolution and vehicle states considered, the
continuous time Markov model, where possible parameter reductions
can be obtained compared with the discrete model, and the hidden
Markov model, which allowed for modelling states that are not directly
observed in the data by introducing a new state to the original Markov
model. The associated application however was constrained to the two
vehicle status of ‘driving’ and ‘not driving’ without any charging loca-
tions allocated.

Another example of Monte Carlo simulation is presented in [4]
where three key variables, consisting of the time of vehicles’ arrival and
departure time at and from charging locations and the travelled dis-
tance in between, were selected from a transportation database for
vehicle motion generation. Since the variables were statistically de-
pendent, a copula function was employed to join the univariate dis-
tribution functions to build the joint multivariate distribution function
for both a single and double journeys, which was then used for the
Monte Carlo simulation to model vehicle use patterns.

A Gaussian distribution, non-uniform distribution and conditional
Gaussian distribution was assigned in [7] for simulating the arrival
time, charging time and departure time, respectively. Similar distribu-
tions have also been assumed for EVs’ arrival and departure in [8] and
[9] respectively. In reality, however, such predefined distributions are
sometime unsuitable for vehicle pattern simulation. For example, [10]
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sampled from a Gaussian distribution function to synthetize the tra-
velled distance, which according to [4] was correlated with and
therefore should be determined by the departure time of the commuter.

Ref. [1] also proposes a statistical modelling approach to generate
daily driving patterns, where the temporal distribution of departure and
arrival times and their correlation were modelled first, and the syn-
thetic driving cycles associated with the driving distance distribution
were then constructed. The acceleration related variables used for
synthetic driving pattern construction in [1] are however unavailable in
most of the transportation data, which would limit the application of
the method.

A multi-agent system with percolation approach is presented in [11]
for simulating EVs’ driving patterns, where mobile and static agents are
employed and the percolation methodology is used to identify probable
locations of EV charging activities.

It is important that the synthetized vehicle patterns are verified
against the original vehicle records, but so far not many publications
have been found that have undertaken this. The closest are the work
presented in [5], where the seasonal charging loads that were generated
from various stochastic models were compared with those from the
original GPS based vehicle use patterns, and [1], where simulated ar-
rival time distribution is verified against the original real-life mea-
surement. This present paper makes a contribution by providing a detail
verification of vehicle characterisation as well as different charging
location scenarios.

Following on from the development of synthetic EV driving pat-
terns, these models have been used to analyse the impact of EV char-
ging on the distribution network, such as [6], which estimated the
thermal effect of EV charging on transformer aging, and [12], in which
the peak load, total loss and voltage violation of the system due to the
EV charging load under different year scenarios were investigated.

It is understood that the stochastic nature of EV motion would lead
to uncertainties in the EV demand curve and therefore network op-
erational metrics. The uncertainty of EV load due to one million EVs
under the scenario of uncontrolled domestic charging was analysed in
[4], but only on a nationally aggregated demand scale. This present
paper calculates the uncertainties of the EV demand and associated
network metrics due to EV patterns using the MCMC simulation. Such
uncertainty analyses provide precious information for the network
operators and also help with system planning. The other strengths of
this work are the high time resolution of ten minutes and the detailed
and verified representation of vehicle use.

National transportation statistics such as National Household Travel
Survey [13] and Mobility Research Netherlands [14] have been in
support of EV investigations in [6] and [4] respectively. The present
work utilizes the 2000 UK Time of Use Survey (TUS) data, [17], because
of its high time resolution and in order to be consistent with the do-
mestic electricity consumption model [15] which was developed based
on the same set of data and will be employed here to generate the
domestic base load, house by house.

The work presented in this paper utilizes MCMC simulation to
generate synthetic EV use patterns based on vehicle movement char-
acterisation, in this case from the TUS data. By using MCMC simulation,
the impact of the uncertainty in EV load on the power system is in-
vestigated at a distribution network level.

1.1. Contribution of this work

The fore-mentioned works have been summarised in Table 1 in
terms of 6 model features that the presented work possesses, from
which it can be seen that the contributions of this work are fine data
resolution, which allows detailed and accurate vehicle movement
modelling, verification of vehicle driving patterns, which guarantees
the simulation accuracy, and uncertainty analysis of network impact,
which is important for grid planning and operation.

The MCMC simulation presented in [16] was rather provisional in

the sense that model results were not subject to verification and un-
certainty analysis for practical network assessment was not undertaken.
The present paper includes both these important elements.

The work in [2] was simplified by assigning a fixed driving period of
30min per journey in the Markov Chain transition model construction,
which has a completely different driving period distribution from the
TUS data, as will be presented later in this paper. The vehicle move-
ment modelling using this assumption in [2] would therefore be in-
accurate. This present work contributes to improve the Markov Chain
model by adding a self-transition of driving to the state transition
diagram which was absent in the work of [2], and the finer data re-
solution defined by the TUS data used here is capable of capturing more
accurate vehicle movement.

2. Time of use survey (TUS) data

The UK 2000 time of use survey (TUS) [17], was carried out on
domestic activities for both weekdays and weekends including the use
of privately owned vehicles. Each survey was on a 24-h basis with 10-
min resolution, starting at 4.00 am and ending at 3.50 am the next day,
since activities reached a minimum around this time of day [17]. The
vehicle driving related survey diaries were chosen for the analyses in
this work, and the vehicle status for such diaries were classified into
four distinct states: namely ‘driving’; ‘parking at home’; ‘parking at
workplace’; and ‘parking at commercial areas’. The vehicles’ departure
and arrival activities and individual journey time could then be sub-
sequently obtained for the selected database. It should be noted that a
further process of removing any diaries with a daily journey longer than
180min was undertaken to reflect the feasible electric range of EVs in
accord with the EV specification in Section 4. The number of diaries
from the processed TUS data is 1476 and 2642 for the weekday and
weekend data, respectively.

The statistical characteristics of the selected TUS data that involve
vehicle driving are illustrated in Figs. 1–4 for both the weekday and
weekend case. In both cases the vehicle activities are configured based
on the assumption of a periodically stationary daily cycle from 4 am to
3.50 am the next day due to the minimal activities at this period, which
is verified by the smooth transition at this time of day as illustrated in
Fig. 1. A morning and evening weekday driving peak can be overserved
in Fig. 1(a), which can be confirmed as for commuting purpose by re-
ferring to the associated arrival and departure activities from Fig. 2(a),
where the probability value is obtained by dividing the associated

Table 1
Summary of relevant literature works.

A B C D E F

[1] ✓ ✓ ✓ ✓ — —
[2] ✗ ✓ ✗ ✗ ✓ ✗

[3] ✓ ✗ ✓ ✓ ✗ ✗

[4] ✗ ✓ ✓ ✗ ✗ ✗

[5] ✗ ✓ ✓ ✓ ✗ ✗

[6] ✗ — — — ✓ ✗

[7] ✗ ✓ ✗ — ✗ —
[10] ✗ ✓ ✗ ✗ — —
[12] ✗ ✓ ✗ — ✓ ✗

[16] ✓ ✓ ✓ ✗ ✓ ✗

This work ✓ ✓ ✓ ✓ ✓ ✓

A: Fine data resolution (less or equal to 10min per step).
B: Vehicle status definition.
C: Vehicle movement simulation.
D: Vehicle use pattern verification.
E: Detailed network impact analyses considering charging location.
F: Uncertainty analysis of detailed network impact.
✓: model feature is included in a suitable manner.
✗: model feature not included.
—: not relevant.

Y. Wang, D. Infield Electrical Power and Energy Systems 99 (2018) 85–94

86



Download English Version:

https://daneshyari.com/en/article/6859332

Download Persian Version:

https://daneshyari.com/article/6859332

Daneshyari.com

https://daneshyari.com/en/article/6859332
https://daneshyari.com/article/6859332
https://daneshyari.com

