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A B S T R A C T

The integration of storage systems into smart grids is being widely analysed in order to increase the flexibility of
the power system and its ability to accommodate a higher share of wind and solar power. The success of this
process requires a comprehensive techno-economic study of the storage technology in contrast with electricity
market behaviour. The focus of this work is on lead-acid and vanadium redox flow batteries. This paper presents
a novel probabilistic optimization model for managing energy storage systems. The model is able to incorporate
the forecasting error of electricity prices, offering with this a near-optimal control option. Using real data from
the Spanish electricity market from the year 2016, the probability distribution of forecasting error is determined.
The model determines electricity price uncertainty by means of Monte Carlo Simulation and includes it in the
energy arbitrage problem, which is eventually solved by using an integer-coded genetic algorithm. In this way,
the probability distribution of the revenue is determined with consideration of the complex behaviours of lead-
acid and vanadium redox flow batteries as well as their associated operating devices such as power converters.

1. Introduction

Integration of renewable energies is seen as a way to harmonize
technological progress with environment conservation. However, re-
newable natural resources are highly variable, which directly contrasts
with the operating philosophy of energy conversion systems. To solve
this dilemma, the adopted option has been to increase the flexibility of
the power system by incentivizing consumers to modify their con-
sumption behaviour or by installing energy storage devices in a cen-
tralized or de-centralized manner so that the power consumption from
renewable sources is enhanced.

Many efforts have been made to develop devices capable to store
energy at different magnitudes. According to their technical char-
acteristics, storing technologies can be used for different tasks of power-
system operation such as integration of renewable power generation,
emergency and telecommunications power support, ramping and load
following, peak-shaving, and load levelling [1]. However, their eco-
nomic integration into energy business and electricity markets is diffi-
cult and depends on many important factors.

Regarding the techno-economic analysis for the integration of en-
ergy storage in European Union (EU) countries, according to the results
reported by Zafirakis et al. in [2], those electricity markets with low
degree of competitiveness and highly dependent on energy imports
offered the highest opportunities for the successful incorporation of
energy storage. In such markets, energy imports are used to cover peak
loads, which results in high peak-prices and favourable conditions for
energy storage operation. The transition toward a power system
strongly based on renewable energies is currently under analysis in EU
countries. According to the most recent studies, pumped hydroelectric
storage (PHS) can play a key role in the mitigation of power fluctuation
related to wind-power generation, while other technologies such as
conventional batteries and hydrogen-based storage units are not eco-
nomically viable [3]. In the United States, Bradury et al. [4], analysed
the integration of a wide range of storage technologies in several
electricity markets and concluded that economic benefit depends on
charging and discharging efficiencies, the corresponding self-discharge
ratios, and capacity. According to the study’s results, economic benefit
increases as the conversion efficiency of the corresponding storage

http://dx.doi.org/10.1016/j.ijepes.2017.10.037
Received 7 June 2017; Received in revised form 3 October 2017; Accepted 30 October 2017

⁎ Corresponding author at: INESC TEC and Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.
E-mail address: catalao@ubi.pt (J.P.S. Catalão).

Electrical Power and Energy Systems 97 (2018) 72–84

0142-0615/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01420615
https://www.elsevier.com/locate/ijepes
http://dx.doi.org/10.1016/j.ijepes.2017.10.037
http://dx.doi.org/10.1016/j.ijepes.2017.10.037
mailto:catalao@ubi.pt
http://dx.doi.org/10.1016/j.ijepes.2017.10.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2017.10.037&domain=pdf


device improves provided that it has a relevant effect on the power
transaction between the storage unit and the power system. On the
other hand, the storage capacity of less than half a day offers higher
benefits. In addition, the volatility of electricity prices and daily be-
haviour are important factors because the highest revenue is obtained
under peak-price conditions.

Similarly, using data from the United States, de Sisternes et al. [5]
concluded that storage technologies are particularly required when
high reduction rates of carbon dioxide (CO2) emissions are among the
main goals. This was particularly observed for conventional battery
technologies with low capacity (around 2 h), while storage units of
higher magnitudes (specifically PHS- based with 10 h of duration) were
found to be suitable when massive deployment was required. In Great
Britain, interesting results were reported by Dunbar et al. in [6], where

the influence of wind power generation on electricity prices and sto-
rage-unit profitability was evaluated. According to the observed results,
the incremental capacity of wind-power generation could reduce elec-
tricity prices and reduce the frequency of price spikes, reducing the
benefits obtained from the operation of storage units at peak prices. On
the other hand, this situation could introduce uncertainty about the
profitability of storage device installation due to yearly variations in
revenue. In Germany, the transition to a power system powered by
clean energies has been also analysed. Weitemeyer et al. [7] estimated
that up to 50% of electricity demand could be supplied if the power
generation mix was based on wind and solar energies combined with
the appropriate capacity of flexible generation units. In this way, re-
newable power curtailment and energy storage integration could be
avoided. However, if more than 80% of electricity demand has to be

Nomenclature

t index of each element of the predicted prices ( = …t T1, , )
h index of each element of the large-scale price database

( = …h H1, , )
p index of each coefficient of AR part ( = …p P1, , )
q index of each coefficient of MA part ( = …q Q1, , )
l index for each lag of autocorrelation analysis ( = …l L1, , )
m index for each MCS trial ( = …m M1, , ).
g Index of each generation of GA ( = …g G1, , )
k index of each individual of GA ( = …k K1, , )
i index of each individual of GA ( = …i I1, , )
b index of each bit of individual →ak ( = …b B1, , )
ARp pth auto-regressive coefficient
MAq qth moving average coefficient
eh error of ARMA model at time h .
EPh electricity price at time h (€/MWh)
EPmin minimum price of the large-scale price database (€/MWh)
EPmax maximum price of the large-scale price database

(€/MWh)
TEPh transformed electricity price at time h
TSEPh transformed and standardized electricity price at time h
FEPt forecasted electricity price at time t (€/MWh)
FTEPt forecasted transformed electricity price at time t
FTSEPt forecasted transformed and standardized electricity price

at time t
Qstat Ljung-Box statistic
rl autocorrelation of the residuals at lag l
δ significance level (0.05)
χδ

2 chi-square distribution with − −L P Q degrees of freedom
and significance level δ

FN CDF of a normal distribution
FEP CDF of the large-scale price database
fFE t, PDF of electricity price at time t (beta PDF)
FFE t, CDF of electricity price at time t (beta PDF)
αt , βt parameters of beta PDF at time t
fDA t, PDF of electricity price at time t used for day-ahead pre-

diction.
AFP average forecasted prices (€/MWh)
SDFP standard deviation of forecasted prices (€/MWh)
ATEPt averaged transformed electricity price at time t
FEPSt m, forecasted electricity price scenario at time t and trial m

(€/MWh)
NFEPt normalized forecasted electricity price (€/MWh)
NFEPSt m, normalized forecasted electricity price scenario at time t

and trial m
ut m, correlated random variable with normal distribution
φ correlation coefficient
ξ non-correlated variable with normal distribution

X crossover rate of GA (ARMA model)
R mutation rate of GA (ARMA model)
fGA s, fitness function of individual s
A population of GA (ARMA model)
Z population of GA (battery control)
→ak individual k of GA (ARMA model)
→zi individual i of GA (battery control)
ab

k value of bit b of individual →ak
zt

i control decision at time t for individual i
NS number of batteries in serial
NP number of batteries in parallel
RVi revenue of individual i
PSYS t, power of battery bank at time t
ZPSYS t i, , power of battery bank at time t for individual i
TA t, ambient temperature at time t (K)
TE electrolyte temperature (K)
Ut battery voltage under general conditions (V)
Umin minimum battery voltage (V)
Umax maximum battery voltage (V)
ULAB t

C
, battery voltage of LAB under charging conditions (V)

ULAB t
D

, battery voltage of LAB under discharging conditions (V)
UVRB t

C
, battery voltage of VRFB under charging conditions (V)

UVRB t
D

, battery voltage of VRFB under discharging conditions (V)
SOCt SOC at time t
SOCmin minimum SOC
SOCmax maximum SOC
DODt DOD at time t
It current of LAB (A)
Pt battery power of VRFB (kW)
CN battery rated capacity (Ah for LAB and kWh for VRFB)
C10 capacity in 10 h of LAB (Ah)
I10 current in 10 h of LAB (A)
IG O, normalized gassing current for a 100 Ah battery (A)
UG O, nominal voltage under gassing conditions (V)
TG O, nominal temperature under gassing conditions (K)
ηINV t, efficiency of the inverter at time t
ηV t

C
, voltage efficiency of VRFB during charging at time t

ηE t
C

, power efficiency of VRFB during charging at time t
ηVRB t

C
, efficiency of VRFB during charging at time t

ηV t
D
, voltage efficiency of VRFB during discharging at time t

ηE t
D
, power efficiency of VRFB during discharging at time t

ηVRB t
D

, efficiency of VRFB during discharging at time t
ηVRB t, efficiency of VRFB at time t
IPINV

1 , IPINV
2 inverter parameters

⋯VP VPLAB LAB
1 12 voltage parameters of LAB.

⋯VP VPVRB VRB
1 7 voltage parameters of VRFB

⋯CP CPLAB LAB
1 3 current parameters of LAB

⋯EP EPVRB VRB
1 20 efficiency parameters of VRFB
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