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A B S T R A C T

Load control strategy has become a focus of researches, as demand-side resources are technically and eco-
nomically desirable to relieve system power imbalance. In this paper, a hierarchical control strategy via load
aggregator (LA) is proposed, considering both the evaluation of potential response capacity of large-scale re-
sidential loads and optimal allocation of response demand to each individual load. First, an aggregate model is
established to exploit the time-varying potential response capacity of a population of residential loads. In the
upper strategy, an equivalent response potential (ERP) index is created to quantitatively calculate the aggregate
capacity and utilized to guide the allocation of total response demand to each LA. In the lower strategy, an
optimal allocation model is built to determine the response status of each residential load per minute, ensuring
end-user satisfaction and demand response requirements. The aggregate model and control strategy are verified
valid through case studies. Furthermore, model accuracy and strategy implementation are discussed as well.

1. Introduction

With the high penetration of intermittent renewable generation and
the remarkable increase in power transmission capacity, electric power
system has been confronted with the hazard of severe short-term
(minutes or even seconds) power shortage [1,2]. Such short-term power
shortage will probably deteriorate into cascading failures or even large-
scale blackouts if generation-side regulation is limited to provide the
desired power capacity [3]. Thanks to the utilization of intelligent
terminal devices, improvement of smart meter techniques and two-way
communication technologies [4,5], demand response (DR) has become
an alternative to alleviate power supply deficit by selectively curtailing
loads [6].

There have been tremendous studies of demand-side load control
strategy. Based on the literature review, load control strategies can be
classified into two categories: one is control-architecture-based strategy
and the other is control-timescale-based strategy [7–17]. Concerning
the former one, Hiskens et al. [7] have summarized that there are three
kinds of load control architectures, including centralized load control
architecture, distributed load control architecture, and hierarchical
load control architecture. When it comes to control-timescale-based
strategy, it can be categorized into three types: primary load regulation
(second-level), secondary load regulation (minute-level), and tertiary

load regulation (24-h-level), which is similar to generation-side fre-
quency control strategy [9,12–14]. The objective of our paper is to
remedy the minute-level imbalance between generation and consump-
tion side using the potentials of large-scale residential loads. In order to
manage such a large population of small loads, a hierarchical load
control architecture via aggregators is adopted in this paper.

Notwithstanding the significant effort in load control strategies to
manage frequency and energy imbalances in power systems, the ex-
isting literature has barely quantitatively evaluated the time-varying
potential capacity of demand-side residential loads. Most of them as-
sumed the potential response capacity of demand-side resources was a
fixed value (e.g. several MW) or a fixed percentage of the total con-
trollable loads when implementing their control strategies. For ex-
ample, Trudnowski et al. [18] stated that about 20% of residential load
could be interrupted for short periods; Kamwa et al. [19] assumed that
the total size of the controllable loads was 62.4 MW (1% of total load).
With the improvement of smart meter techniques and two-way com-
munication technologies, potential response capacity of residential
loads can be evaluated quantitatively nowadays.

The potential response capacity of residential loads, especially
thermostatically controlled loads (TCL), changes according to their
physical operating feature. For instance, only when an air conditioner
(AC) stays in the ON status can it possess the ability of providing
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response power to system. In other words, residential loads may be
unavailable for response during the power shortage period. Because of
such kind of physical operating characteristics, the aggregate potential
capacity of large-scale residential controllable loads is time varying
rather than a fixed value. Therefore, an aggregate model is needed for
evaluation of potential capacity of residential loads.

Aggregate models for active residential loads have been investigated
over the past several years [20–26]. However, few papers have taken
physical operating characteristics of TCLs and EVs, together with user
comforts and DR policy (e.g. response times) into consideration at the
same time. Kalsi et al. [20] presented an aggregate model for TCLs,
considering a second-order effect to estimate the transient dynamics of
DR. Meanwhile, Callaway et al. [22] studied the temperature state
evolution of TCLs through Markov chain models, and built a model-
estimator-controller to balance the system power. Nevertheless, the
impact of user comforts is neglected. The shortcoming was then in-
vestigated by Bouffard et al. [24], who employed a physical-based
model to calculate on-time statistics of 1000 electric water heaters
(EWH) while accounting for user satisfaction. Besides, the popularity
and response potentials of electric vehicles (EV) should also be con-
sidered because EV loads can provide response power to system without
affecting end-user performance for significant periods [25–27]. There-
fore, all the associated factors such as physical characteristics, end-user
behaviors and DR policies shall be considered in aggregate models.

In this paper, an aggregate model considering load physical dy-
namics, end-user comforts and constraints of response times is estab-
lished. An equivalent response potential (ERP) index is then created to
calculate the potential response capacity quantitatively. In the upper
layer of our control strategy, control center allocates the total response
demand to each LA according to the ERP index; in the lower layer, each
LA further determine response status of each individual load per
minute, considering control cost, user comfort level, response con-
straints and the scheduling precision. The strategy is verified through a
case study.

The contributions of our paper can be summarized as the following
three aspects.

• An aggregate model for residential controllable loads is established
to evaluate the time-varying response capacity, with physical op-
erating characteristics, end-user comforts and constraints of re-
sponse times considered.

• An Equivalent Response Potential (ERP) index is created to calculate
the aggregate response capacity of each LA, and then allocate total
imbalance power to them according to the ERP index.

• Response status of each residential load per minute is explored using
a multi-constrained optimization model, with control cost, user
comforts, response constraints and scheduling precision considered.

The remaining of this paper is organized as follows. In Section 2, an
aggregate model for residential loads is established. In Section 3, total
potential response capacity of residential loads is evaluated quantita-
tively. A hierarchical load control strategy based on the aggregated
response capacity is proposed in Section 4 and validated through a case
study in Section 5. Discussions and conclusions are given in Section 6
and 7.

2. An aggregate model for residential DR resources

In this section, an aggregate model based on individual load char-
acteristics is set up for large-scale residential loads, considering single
load dynamics, user comfort indices, and demand response constraints.

2.1. Physical-based load models

Physical-based single load model in [28] is employed to describe the
heat transfer process of AC loads and WH loads, together with the

charging process of EVs.

2.1.1. Thermal dynamic model of an AC load
The heat transfer process of an AC load is associated with many

factors, including house structures, the electrical characteristics of
space cooling or heating unit, etc. Thermal dynamic model of an AC
load can be simplified into an input-output model where the input
signal is working mode and the model output is indoor temperature. For
each time step t, the indoor temperature can be calculated as
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where TAC,t + 1 and TAC,t are the indoor temperature at time t+1 and t,
respectively;△t is the time interval; Gt is the heat gain rate of the house
during timeslot t; Δc is the calories required each time the indoor
temperature is raised by 1°C; CAC is cooling/heating thermal capacity;
SAC,t is the status of AC during timeslot t (SAC,t=0 at the OFF status,
and SAC,t=1 at the ON status).

2.1.2. Thermal dynamic model of a WH load
Similar to the thermal dynamic model of an AC load, the heat

transfer process of a WH load is also influenced by different factors,
including tank volume of WH, the electrical characteristics of water-
cooling or heating unit, etc. Therefore, WH model can also be simplified
into an input-output model where the input signal is working mode and
the model output is water temperature. For each time step t, water
temperature can be calculated as
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where TWH,t+1 and TWH,t are the water temperature at time t+1 and t,
respectively; VWH is the volume of tank; flt is the water flow rate during
timeslot t; Tin is the temperature of inlet water; α is the increase of
water temperature per unit time at rated power; PWH is the rated power
of WH; ζ is the decrease of water temperature per unit time in the
natural cooling state.

2.1.3. Charging model of an EV load
Different from the heat transfer process of thermal loads, modeling

EV load should consider the charging process. To model the charging
process, several essential parameters cannot be ignored, such as rated
charging power, battery rated capacity and state-of-charge (SOC), etc.
Therefore, the battery SOC is determined by
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where SEV,t + 1 and SEV,t are the amount of energy left in the battery at
time t+1 and t, respectively; PEV is the rated power of EV; Cbatt is the
battery rated capacity.

2.2. Quantitative representation of user comfort level

User comfort of thermal loads can be affected by temperature, hu-
midity, and flow rate, etc. Among all the factors, temperature has the
most critical influences on user comfort, so user comfort level of AC
loads and WH loads are calculated by (4) and (5).
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where IAC, IWH are user comfort indices of AC and WH; TAC, TWH are the
actual temperature of AC and WH; Tc,AC, Tc,WH are the optimum tem-
perature of AC and WH; ΔTAC, ΔTWH are the interval length of tem-
perature comfort zone.
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