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A B S T R A C T

There is increasing evidence of the shortage of solver-based models for solving logically-constrained AC optimal
power flow problem (LCOPF). Although in the literature the heuristic-based models have been widely used to
handle the LCOPF problems with logical terms such as conditional statements, logical-and, logical-or, etc., their
requirement of several trials and adjustments plagues finding a trustworthy solution. On the other hand, a well-
defined solver-based model is of much interest in practice, due to rapidity and precision in finding an optimal
solution. To remedy this shortcoming, in this paper we provide a solver-friendly procedure to recast the logical
constraints to solver-based mixed-integer nonlinear programming (MINLP) terms. We specifically investigate the
recasting of logical constraints into the terms of the objective function, so it facilitates the pre-solving and
probing techniques of commercial solvers and consequently results in a higher computational efficiency. By
applying this recast method to the problem, two sub-power- and sub-function-based MINLP models, namely SP-
MINLP and SF-MINLP, respectively, are proposed. Results not only show the superiority of the proposed models
in finding a better optimal solution, compared to the existing approaches in the literature, but also the effec-
tiveness and computational tractability in solving large-scale power systems under different configurations.

1. Introduction

Logical constraints, which are one particular kind of discrete or
numerical constraints such as logical-and, logical-or, negation, and
conditional statements, are considered as the nature of most practical
optimization problems, and the practical power systems are no excep-
tion. Although the logical constraints exist in most decision-making
problems of power systems, due to disjoint functioning regions of
generating units, more often than not, for the sake of simplicity and
computational tractability, these constraints are neglected. This may
facilitate finding an optimal solution, however, on the other hand, an
accurate model should embody all operational constraints, otherwise, it
may lead to a solution with an unsatisfactory outcome. Thus, an ap-
propriate model or tradeoff, between model accuracy and computa-
tional efficiency, should be investigated to counteract the aforemen-
tioned drawback.

The AC optimal power flow (ACOPF) problem, even in the theore-
tical studies, is a highly nonlinear problem, due to active and reactive
power flow constraints [1], and considering logical constraints makes it
even a more complex and highly nonconvex-nonlinear problem. On the
other hand, to have a more practical model, the valve-point effect
should be considered [2,3], and this exponentially increases the degree

of nonlinearity of the problem. Moreover, considering shunt VAr
compensator and more specifically thyristor controlled series capacitor
(TCSC) and thyristor controlled phase shifter (TCPS) play a crucial role
in practical power system operation and planning problems, by im-
proving the efficiency, voltage fluctuations, and loadability. In plan-
ning-based problems, the optimal siting and sizing of FACTS devices are
taken into account [4,5], while in operating-based problems, the ad-
justment of these devices, which have already been optimally placed
and sized, is considered [6–8]. Incorporating such devices with high-
nonlinearity characteristics besides the integer variables of logical
constraints results in a complex mixed-integer nonlinear programming
problem. The price to be paid for considering the logical constraints and
the flexible AC transmission systems (FACTS) is a dramatic increase in
the degree of computational complexity, which if handled without care
may lead to intractability. This is one of the main motivations of widely
using heuristic-based approaches to solve the practical OPF-based
problems [9–12]. These approaches may work well in finding an op-
timal solution for specific systems or models; however, finding an ac-
ceptable solution for other systems and models, especially when logical
constraints are taken into account, may require major modifications
and adjustments. On the other hand, the most successful approaches,
among others, to solve OPF problems such as interior point method
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(IPM) [13], primal–dual IPM [14], predictor corrector IPM (PCIPM)
[15], decomposed PCIPM [16], trust region and IPM [17], which are
known as the standard methods to solve OPF problems, may properly
find an optimal solution for the conventional OPF problems, but when
applied to OPF problems with logical constraints and FACTS devices
(with discrete decision variables), the reliability of them should be
seriously questioned [18]. This shows the exigency of proposing a
trustworthy model for logical constrained problems.

Until now, to the best of our knowledge, for the logically con-
strained ACOPF (LCOPF) problems (with or without considering VAr
compensators) there is no solver-based model, although, for the logi-
cally constrained economic dispatch (LCED) problem, which is a sim-
plified OPF problem, several solver-based models have been proposed.
First, in [19], a mixed-integer quadratic programming (MIQP) model
has been proposed, and later, in [20] and [21], the authors have de-
veloped the MIQP model by proposing a big-M based MIQP (M-MIQP)
model and an unambiguous distance-based MIQP (UDB-MIQP) model,
respectively. These models could obtain the global optimal solution of
ED problems; however, their incapability in dealing with non-smooth
and nonlinear terms is still an undeniable shortcoming that prevents
them to be applied to LC-ACOPF problems. In order to consider the
nonlinear terms such as transmission losses, first, in [22], and later, in
[23], a novel transformation has been introduced. Such transformation

may cause significant difficulties for the commercial solvers since (a) it
results in non-constant upper and lower limits, and (b) the operation of
a unit in only one operating zone is guaranteed by forcing the product
of two continuous variables, correspond with two different operating
zones of that unit, equals to zero, which is a very-hard equality con-
straint and causes severe difficulties for commercial nonlinear solvers.
Therefore, to deal with this problem, in [22], a semidefinite approach,
and in [23], a decomposition technique has been used. Although the
aforementioned models are not capable of solving practical-constrained
models (either complex ED or OPF problems), they have brought new
insights into this area of research by showing the importance of solver-
based models. Even in some existing linear models for ACOPF pro-
blems, [24] and [25], due to the complexity of linearization that highly
depends on the approximation techniques, the logical constraints have
been neglected. Therefore, the main motivations of proposing the
solver-based MINLP models that may fill the existing gap in this area of
research can be summarized as (a) the popularity and efficient out-
comes of solver-based models in other areas, and (b) the lack of an
efficient solver-based model for LCOPF-based problems. Accordingly,
the contributions of this paper are threefold:

(1) A transformation of logical characteristics to mixed-integer non-
linear terms by recasting them to the objective function as:

Nomenclature

(a) Indices

i j, bus indices
k index for disjoint operating zones
ij index for the transmission line or device between bus i and

j
d index for direct power flow
r index for reverse power flow

(b) Sets

Ωb set of buses, … N{1,2, , }b
Ωg set of generating units, … N{1,2, , }g , ⊆Ω Ωg b
Ωl set of transmission elements, … N{1,2, , }l

(c) Variables and Functions

F (·)i fuel cost function of unit i
flij power flow at branch ij
ni nonnegative integer decision making variable for shunt

VAR compensator at bus i
nij nonnegative integer decision making variable for LTCT at

branch ij
Pgi active power generation of unit i
Pik active power corresponding to the operating zone k of unit

i; used in MINLP models
p p/ij

d
ij
r direct/reverse active power between bus i and bus j of

branch ij
q q/ij

d
ij
r direct/reverse reactive power between bus i and bus j of

branch ij
Qci shunt VAR compensation of bus i
Qgi reactive power generation of unit i
tpij transformer tap of branch ij
uik binary decision making variables of unit i and operating

zone k
vi voltage magnitude at bus i
xij

c reactance of TCSC at branch ij
δi voltage angle of bus i

θij voltage angle difference between bus i and j, = −θ δ δij i j.
φij phase shift angle of TCPS at branch ij

(d) Constants

a b c, ,i i i cost coefficients of unit i
bij

ch charging susceptance of branch ij
bi

sh shunt susceptance of bus i (℧)
bij susceptance of branch ij (℧)
e f,i i valve-point cost coefficients of unit i
flij maximum power flow of branch ij
gij conductance of branch ij (Ω)
gi

sh shunt conductance of bus i (Ω)
PDi active power demand at bus i
Pgi , Pgi minimum and maximum active power generation limits of

unit i, respectively
Pgik , Pgik minimum and maximum active power limits correspond to

operating zone k of unit i, respectively
Pik, Pik minimum and maximum active power limits correspond to

operating zone k of unit i, respectively; used in MINLP
models

QDi reactive power demand at bus i
QCi , QCi upper and lower limits of shunt VAR compensator at bus i,

respectively
Qgi , Qgi minimum and maximum reactive power generation limits

of unit i, respectively
rij resistance of branch ij (Ω)
tpij, tpji minimum and maximum limits of transformer tap of

branch ij, respectively
vi, vi minimum and maximum voltage magnitude limits of bus i,

respectively
xij reactance of branch ij (Ω)
xij

c, xij
c minimum and maximum reactance of TCSC at branch ij

zi number of operating zones for unit i
τi predefined step size for shunt VAR compensator at bus i
τij predefined step size for LTCT at branch ij
φij, φij minimum and maximum limits of phase shift angle of

TCPS at branch ij

M. Pourakbari-Kasmaei, J.R. Sanches Mantovani Electrical Power and Energy Systems 97 (2018) 240–249

241



Download English Version:

https://daneshyari.com/en/article/6859473

Download Persian Version:

https://daneshyari.com/article/6859473

Daneshyari.com

https://daneshyari.com/en/article/6859473
https://daneshyari.com/article/6859473
https://daneshyari.com

