Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

A multi-loop control technique for the stable operation of modular multilevel converters in HVDC transmission systems

Majid Mehrasa^a, Edris Pouresmaeil^{b,c}, Sasan Zabihi^d, Ionel Vechiu^c, João P.S. Catalão^{a,b,e,*}

^a C-MAST, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilhã, Portugal

^b INESC-ID, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal

^c ESTIA Institute of Technology, ESTIA, F-64210, Bidart, France

^d ABB Australia Pty Limited, Berrimah, Northern Territory, Australia

e INESC TEC and Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal

ARTICLE INFO

Keywords: Modular multilevel converter (MMC) Circulating currents Passivity control theory Sliding mode control High-voltage direct current (HVDC)

ABSTRACT

A multi-loop control strategy based on a six-order dynamic model of the modular multilevel converter (MMC) is presented in this paper for the high-voltage direct current (HVDC) applications. For the initial analysis of the operation of MMC, a capability curve based on active and reactive power of the MMC is achieved through a part of the six order dynamic equations. According to the MMC's control aims, the first loop known as the outer loop is designed based on passivity control theory to force the MMC state variables to follow their reference values. As the second loop with the use of sliding mode control, the central loop should provide appropriate performance for the hird inner loop to accomplish the accurate generation of reference values. Also, for a deeper analysis of the MMC's dc link voltage stability, two phase diagrams of the dc-link voltage are assessed. Matlab/Simulink environment is used to thoroughly validate the ability of the proposed control technique for control of the MMC in HVDC application under both load and MMC's parameters changes.

1. Introduction

The modular multilevel converter (MMC) topology has been a subject of increasing importance because of its special characteristics such as easy replacement of fault sub-modules (SMs), centralizing the distributed energies, modular structure, very low harmonic components and power losses, and also decreased rating values [1–5]. The MMCs have been widely utilized in various voltage/power levels of growing applications such as solar photovoltaic [6], large wind turbines [7,8], *ac* motor drives [9,10], high-voltage direct current (HVDC) transmission systems [11,12], *dc-dc* transformers [13], battery electric vehicles [14], distributed energy resources (DERs) [15,16], and flexible *ac* transmission systems (FACTS) [17].

Many researchers have focused on the control and modelling issues of the MMCs in various applications in recent years. Ref. [18] deals with the fault condition of the MMC and tries to provide normal performance for the MMCs by the help of an energy-balancing control. A binary integer programming based model predictive control for the MMCs is proposed in [19] to optimize the multi-objective problem with minimum computing effort related to the control method which is the main contribution of the paper. A closed loop-needless PID controller

http://dx.doi.org/10.1016/j.ijepes.2017.10.006

along with increasing the arm inductance are considered to evaluate the effects of output voltage and current total harmonic distortion (THD) response in a modular multilevel converter [20]. Ref. [21] presents a control strategy based on calculating the differential current references to provide desired operation for the MMCs in HVDC applications. Various dynamic models of the MMCs and their limitations in presenting robust control methods for these converters are investigated in [22]. In this paper, a complete derivation of the proposed switching state functions without losing any circuital characteristics of the converter is accomplished and a switching-cycle control approach proposed based on unused switching states of the MMCs. A modulation technique is proposed in [23] based on a fixed pulse pattern fed into the SMs to maintain the stability of the stored energy in each SM, without measuring capacitor voltages or any other sort of feedback control. It also removes certain output voltage harmonics at any arbitrary modulation index and any output voltage phase angle. A current control design for independent adjustment of several current components and a systematic identification of current and voltage components for balancing the energy in the arms of an MMC is presented in [24]. In [25], a control strategy based on adding a common zero-sequence voltage to the reference voltages is proposed for balancing the arm currents of the

^{*} Corresponding author at: Faculty of Engineering of the University of Porto, Portugal. *E-mail address:* catalao@ubi.pt (J.P.S. Catalão).

Received 5 April 2017; Received in revised form 17 August 2017; Accepted 4 October 2017 0142-0615/ © 2017 Elsevier Ltd. All rights reserved.

Nomenclature		P_j^*	reference values of active por
Indicoc		SMe	Sub-Modules
muices		I PF	Low Pass Filter
K	a h c	DIM	Direct I vanunov Method
I	1 2	HVDC	High-Voltage Direct Current
5	1, 2	MMCs	Modular Multilevel Converter
Abbreviations		PI	Proportional-Integral
110010110		SLPWM	Shift Level Pulse Width Mod
KVI	Kirchhoff's Voltage Law		Shine Dever Fulbe Wrath mou
KCI	Kirchhoff's Current Law	Variables	
	Central Loon Controller	<i>i</i> u tub tob	
ILC	Inner Loop Controller	0*	reference values of reactive r
w	rated capacitor voltage	\mathcal{L}_{J}	transfer function
Sc nu	switches of the MMCs	(uq)j (~) Zazi	error vector
$\mathcal{V}_{(u)jk}$	lower and upper arms voltages	-uqj Edaj	total saved energy
v(ui)kj	output voltages of the MMCs	-uqy Sələri	time-variable sliding surface
v _k j	dc-link voltage	~uqj	
v ac Ulun	first equivalent modulation function of the respective SM	Paramete	rs
икј1	stacks		
u_{kj2}	second equivalent modulation function of the respective	$1/\xi_{(dq)}$	proportional gain
	SM stacks	L	inductance of the MMCs
$v_{sm(ul)kj}$	SMs voltages	R	resistance of the MMCs
$v_{t(dq)j}$	ac-side voltages of the MMCs	L_p	arm's inductance
$v^*_{(dq)j}$	reference value of output voltages of the MMCs	R	arm's resistance
v_{dc}^*	reference value of <i>dc</i> -link voltage	C_{eq}	equivalent dc-link capacitor
i_{kj}	currents of MMCs	R _{dc}	equivalent dc-link resistance
i _{cirkj}	circulating currents of the MMCs		injection resistances
$i_{(ul)kj}$	lower and upper arms currents	f_{ac}	ac-side frequency
i _{dcj}	MMCs dc-link currents	f_s	switching frequency
i _{sm(ul)kj}	currents of SMs	n	numbers of SMs in each arm
$i^*_{(dq)j}$	reference values of MMCs currents	С	capacitor of SM
$i_{cir(dq)j}^{*}$	reference values of circulating currents	C_{fi}	capacitor of <i>ac</i> filter
$i_{l(dq)j}$	load currents	$\omega_{(dq)2},\omega_{(dq)2}$	$_{q)\max 2}$ cut-off frequency
$I_{av(dq)j}$	average currents of the MMCs	$\omega_{p(dq)2}/\xi_{(dq)2}$	_{dq)} integral gain
$i_{(dq)\max j}$	maximum value of MMCs currents	$k_{(dq)j}$	positive constant of CLC
$\sum_{h=1}^{\infty} i_{l(dq)}$	_{b)h} total harmonic current components of loads	$\psi_{cir(dq)j}$	positive constant of CLC
P_j	injected active power of MMCs	$\psi_{(dq)j}$	positive constant of CLC
Q_j	injected reactive power of MMCs		

Electrical Power and Energy Systems 96 (2018) 194-207

active power of MMCs

Convertor

		IVIIVI GS	wodular wulliever converters		
Abbreviations		PI	Proportional-Integral		
		SLPWM	Shift Level Pulse Width Modulation		
KVL	Kirchhoff's Voltage Law				
KCL	Kirchhoff's Current Law	Variable	S		
CLC	Central Loop Controller				
ILC	Inner Loop Controller	O_i^*	reference values of reactive power of MMCs		
	rated capacitor voltage	$H_{(da)i}(s)$	transfer function		
Sent	switches of the MMCs	Zdai	error vector		
$\mathcal{U}(u)jk$	lower and upper arms voltages	-uqj E_{dai}	total saved energy		
V(ul)kj	output voltages of the MMCs	Σ_{aqj}	time-variable sliding surface		
v _{kj}	de link voltage	D _{dqj}	time variable sharing surface		
V _{dc}	first against modulation function of the respective SM	Parameters			
u_{kj1}	stacks	i uluneu			
u_{kj2}	second equivalent modulation function of the respective	$1/\xi_{(dq)}$	proportional gain		
	SM stacks	L	inductance of the MMCs		
$v_{sm(ul)kj}$	SMs voltages	R	resistance of the MMCs		
$v_{t(dq)j}$	ac-side voltages of the MMCs	L_p	arm's inductance		
$v^*_{(dq)j}$	reference value of output voltages of the MMCs	R	arm's resistance		
v_{dc}^*	reference value of <i>dc</i> -link voltage	C_{eq}	equivalent <i>dc</i> -link capacitor		
i _{kj}	currents of MMCs	R _{dc}	equivalent <i>dc</i> -link resistance		
i _{cirkj}	circulating currents of the MMCs		injection resistances		
$i_{(ul)ki}$	lower and upper arms currents	f_{ac}	ac-side frequency		
i _{dci}	MMCs dc-link currents	f_s	switching frequency		
$i_{sm(ul)ki}$	currents of SMs	n	numbers of SMs in each arm		
$i^*_{(da)i}$	reference values of MMCs currents	С	capacitor of SM		
$i_{cir(da)i}^{*}$	reference values of circulating currents	C_{fi}	capacitor of <i>ac</i> filter		
$i_{l(da)i}$	load currents	$\omega_{(da)2},\omega_{(da)2}$	da)max2 cut-off frequency		
$I_{av(da)i}$	average currents of the MMCs	$\omega_{n(da)2}/\xi$	$\omega_{p(dq)2}/\xi_{(dq)}$ integral gain		
$i_{(da)maxi}$	maximum value of MMCs currents	$k_{(da)i}$	positive constant of CLC		
$\sum_{i=1}^{\infty} i_{l(i)}$	halph total harmonic current components of loads	$\psi_{cir(da)i}$	positive constant of CLC		
P_i	injected active power of MMCs	$\psi_{(da)}$	positive constant of CLC		
Q_i	injected reactive power of MMCs	, (uq)j	•		
MMCs under unbalanced load conditions. To reach it, a relationship		feature	of the proposed controller that can increase the stability mar-		
between the dc-link active power and ac-link average active power is		gins of	gins of the MMC performance with existence of more variations.		
achieved a	nd then, the dc component of the arm current is calculated	Accordi	According to the achieved six order dynamic equations of the MMCs,		
hrough the ac-link average active power in the corresponding phase			firstly the outer loop formed by passivity based control technique is		
[25]. In the medium voltage systems, the energy storage can be em-			ed to enable the convergence ability of the MMC's state vari-		
bedded in	MMC that causes several SMs to operate at significantly	ables for	r its reference values in dynamic changes. Then, sliding mode		
lower volt	ages [26]. In the structure presented in [27], the low-fre-	controlle	er is used to prepare the MMCs for stable operation against the		
quency components of the SM's output currents are removed by uti-			MMC's parameters variations as the central loop of the proposed con-		
lizing the interfaced batteries through the non-isolated dc/dc con-t			The inner loop is employed to help other loops have accurate		
verters. Co	ontrol algorithms proposed in this paper are developed to	referenc	e values for its used state variables that as another feature of		
balance the state of charge of batteries. A compact and clear re-			bosed controller, can generate instantaneously the needed re-		
presentatio	on of differential equations is obtained for the MMC by in-	values of both MMCs in various operating conditions. Also, a			
troducing	two nonlinear coordinate transformations in [28]. In the	capabili	ty curve is obtained to specify the allowable area of the MMC's		
proposed n	nodel, two candidate outputs leaded to the internal dynamics	active a	nd reactive power generation in HVDC application and also R		
of second	or third order and a quasi-static feedback generates a linear	and L v	ariations effects on the curve are evaluated that can provide		
input-outp	ut behaviour. Other different aspects of MMC application in	some co	ntrol considerations to understand more about the simulation		
HVDC syst	em such as DC fault and DC solid-state transformers oper-	results o	f the MMC's performance. Stability analysis of dc-link voltage is		

between the dc-link active power and ac-link average active power is achieved and then, the dc component of the arm current is calculated through the ac-link average active power in the corresponding phase [25]. In the medium voltage systems, the energy storage can be embedded in MMC that causes several SMs to operate at significantly lower voltages [26]. In the structure presented in [27], the low-frequency components of the SM's output currents are removed by utilizing the interfaced batteries through the non-isolated dc/dc converters. Control algorithms proposed in this paper are developed to balance the state of charge of batteries. A compact and clear representation of differential equations is obtained for the MMC by introducing two nonlinear coordinate transformations in [28]. In the proposed model, two candidate outputs leaded to the internal dynamics of second or third order and a quasi-static feedback generates a linear input-output behaviour. Other different aspects of MMC application in HVDC system such as DC fault and DC solid-state transformers operating conditions are assessed in the references of [31-34].

In many existing methods, simultaneously having robustness against MMC parameters changes and also having very good dynamic tracking responses against the MMC's load changes have not been considered in their designed control techniques. But, in this paper, a multi-loop control strategy is aimed at providing a stable operation of the MMCs in HVDC application under both MMC's arm inductance and resistance parameters variations and also loads changes as well. This the first

2. The proposed differential equation of MMC

all operating conditions.

Fig. 1(a) shows the proposed HVDC system which is consisted of two back-to-back MMCs. The ac-side of the MMC1 comprises ac-system-1, a

done in final part of this paper. Simulation results executed by Matlab/

Simulink demonstrate the validity of the proposed control strategy in

Download English Version:

https://daneshyari.com/en/article/6859493

Download Persian Version:

https://daneshyari.com/article/6859493

Daneshyari.com