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a b s t r a c t

Voltage stability studies have been progressively gaining importance in the power engineering
community. Predicting the saddle-node bifurcation point (SNBP) of a power system has become more
critical as the power-system loading has increased in many places without a concomitant increase in
transmission resources. Since a Newton–Raphson power-flow method is inherently unstable near the
SNBP, adaptations such as continuation methods have been used as stabilizers. A new class of nonlinear
equation solvers known as the holomorphic embedding method (HEM) is theoretically guaranteed to find
the high-voltage solution to the power-flow problem, if one exists, up to the SNBP, provided sufficient
precision is used and the conditions of Stahl’s theorem are satisfied by the equation set. In this paper, four
different HEM-based methods to estimate the saddle-node bifurcation point of a power system, are
proposed and compared in terms of accuracy as well as computational efficiency.

� 2016 Elsevier Ltd. All rights reserved.

Introduction

Because of the difficulty of siting transmission lines, utilities are
often forced to serve increased electric power demand, without a
concomitant expansion of infrastructure. This can lead to the
system being operated closer to its saddle-node bifurcation point
(SNBP) and therefore closer to voltage collapse than desired. There
are many examples of black-outs occurring because of a slow
reduction in voltage magnitudes at buses over a time scale of a
fewminutes to hours followed by a sudden sharp fall in the voltage
magnitudes, e.g., [1]. One goal of a voltage stability study is to
determine the voltage stability margin, e.g., the amount of real
and/or reactive power that can be added before the system
experiences voltage collapse, with the distance to the SNBP being
a quick indicator of stability margin.

Significant work has been done to analyze the voltage stability
of systems. It has been shown that no dynamics are required to be
modeled in order to obtain the SNBP of a system and that the small
signal voltage stability limit depends only on the steady-state char-
acteristics of the system [2–4]. New techniques of analyzing the
voltage stability in steady-state systems while considering system
limits such as generator reactive power limits, voltage magnitude

constraints, and AVR constraints have been presented in numerous
papers, ([5–13] to cite only a few.) Optimization algorithms such as
the genetic algorithm, particle swarm optimization and their vari-
ants have been used to detect the closest SNBP in [14–17]. The
analysis of voltage stability of power systems and computation of
maximum loadability while incorporating dynamic constraints
along with steady-state constraints has been explored in [18–24].
Wide-area-measurement-based voltage stability analysis using
modified coupled single-port models has been examined in [25];
while physical constraints such as var limits are not considered
in that work, they are shown to be important.

Ultimately, the power-flow (PF) equations and their solution is
at the core of voltage stability analyses and the aforementioned
voltage stability analysis methods use iterative solution methods
which suffer from non-convergence issues. Two classes of iterative
methods for solving the PF problem are well known, Gauss–Seidel
and Newton Raphson (NR) (notable is the Fast Decoupled Load
Flow) [26–30], both of which have many variants developed to
improve the convergence properties ([31–34] to cite only a few.)
The problems with these classes of solvers are also well known:
initial estimate dependence [27,28]; non-convergence when a
solution exists and convergence to the wrong (low-voltage/large
angle) solution [35]. To date, no variants within these classes have
been shown to deal with these problems in a consistent way. Often,
the convergence issues are exacerbated near the bifurcation point.
The most popular class of industrial methods, the NR class,
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converges reliably for systems with nominal voltage profiles [36],
but often struggles near the SNBP.

The method used in most PF applications to estimate the SNBP
is the continuation power flow (CPF), which is an NR-based
method [37]. The computational complexity of the CPF is much
higher than a simple NR PF since it requires solving a new PF prob-
lem at each step as one moves along the P–V curve toward the
SNBP [37]. The problems of a singular Jacobian matrix occurring
at the SNBP are eliminated in [38] by reformulating the power-
flow problem and introducing a new bus type called AQ bus which
has the voltage angle and reactive power consumption specified.

The holomorphic embedding method (HEM) is a more recently
developed class of nonlinear equation solvers that is guaranteed to
converge to the operable solution for the basic PF problem, if it
exists, provided the conditions of Stahl’s theorem are satisfied
[39,40,42]. It is recursive, rather than iterative, and can be config-
ured so that the initial state needed to guarantee the above prop-
erties can be easily calculated. The advantages of the HEM can be
exploited to develop methods that can reliably estimate the SNBP
of a system.

The HEM uses the concept of holomorphic embedding (HE) to
convert the non-holomorphic power-balance equations (PBE’s) of
the PF problem into a set of holomorphic functions. A holomorphic
function is a complex-valued analytic function, which has the
property that it is infinitely complex differentiable around every
point within its domain. One property of holomorphic functions
important for the purpose here is that they can be represented
by their Taylor series in a neighborhood of each point in their
domain [47].

Using the HE formulation, the voltages at all buses and the reac-
tive power at the PV buses are expressed as Maclaurin series of a
complex embedding parameter, a. With the properties of holomor-
phic functions and the use of analytic continuation, Stahl’s theorem
[40] guarantees that, if an operable solution exists at the given
loading level, the correct voltage solution will be obtained using
Padé approximants of the holomorphic series as long as the correct
germ is used [39,43]. (The germ for the HEM is analogous to the
initial estimate of the solution in the NR method and will be
explained in later sections. However, unlike the NR initial estimate,
the germ must be systematically obtained by solving a set of
equations.)

The methods in the literature that calculate the SNBP rely on
solving successive problems, each of which has the complexity of
the PF problem. This paper presents four HEM-based methods that
estimate the SNBP of a system, three of which do not require mul-
tiple PF problems to be solved. All of these methods rely on an
important property of a Padé approximant, that it is the maximal
analytic continuation of the given function [40].

The paper is organized as follows: Discussed in Section ‘‘Two
HEM formulations” is a formulation that allows load and real-
power-generation extrapolation (a property critical to the three
approaches proposed here) for the power-flow problem. Also
discussed in this section is a formulation previously published
and why it cannot be used for load extrapolation. Section ‘‘Padé
approximants and branch cuts” contains the method of using the
roots of Padé approximants to find the SNBP of the system and
the fundamental theory behind this approach. In Section ‘‘The
sigma methods”, two so-called ‘‘sigma methods” used to identify
weak nodes of the power system and to estimate the SNBP of the
system are introduced [44]. In Section ‘‘Numerical results for
scaling all loads uniformly”, the results of numerical experiments
that compare the SNBP’s predicted by different methods when all
loads are scaled uniformly are presented. Section ‘‘Formulation to
allow loads at different buses to be scaled by different amounts”
contains the development of a formulation that can be used to scale
the load vector in an arbitrary direction and, consequently, be used

to obtain the SNBP. Section ‘‘Numerical results with loads at
different buses scaled by different amounts” provides the numeri-
cal results for the formulation described in Section ‘‘Formulation
to allow loads at different buses to be scaled by different amounts”.
Section ‘‘Incorporating var limits in the SNBP estimation” presents
the results when var limits are accounted for and Section ‘‘Proposed
ZIP load model for the HEM” provides the formulation for polyno-
mial ZIP load models. Finally, conclusions are presented in
Section ‘‘Conclusion”.

Two HEM formulations

To apply the HEM to a complex-valued problem requires that
the system of equations to be solved be holomorphic. Because of
the presence of the complex conjugate operator, the traditional
PF equations are not holomorphic. Hence the first step in develop-
ing a proper HEM formulation is to render the PBE’s holomorphic.

Consider a general ðNÞ-bus system consisting of a slack bus,
called slack, a set m consisting of PQ buses, a set p consisting of
PV buses which are not on var limits and a set q consisting of PV
buses on maximum/minimum var limits. The PBE for a PQ bus with
a constant power load is given by

XN
k¼1

YikVk ¼ S�i
V�

i
; i 2 m ð1Þ

where, Yik is the (i; kÞ element of the bus admittance matrix, and Si,
and Vi are the complex power injection and voltage at bus i, respec-
tively. (The HEM model for polynomial ZIP loads will be discussed
in Section ‘‘Proposed ZIP load model for the HEM”.)

The traditional defining equations for a PV bus are given by (2)
and (3).

Pi ¼ Re Vi

XN
k¼1

Y�
ikV

�
k

 !
; 8i 2 p ð2Þ

Vij j ¼ Vsp
i ; 8i 2 p ð3Þ

where Pi denotes the real power injection and Vsp
i is the specified

voltage magnitude at bus i. PV buses on var limits are treated sim-
ilar to PQ buses with their reactive power generation fixed at the
appropriate limit and the real power generation given by (2).

Formulation that allows extrapolation of the load

The above non-holomorphic equations can be holomorphically
embedded in an infinite number of ways. It is possible to embed
(1)–(3) in such a way that the solution obtained at different values
of real a, represents the solution (if it exists) when the complex
power injections at the load buses and real power at generation
buses are scaled by a factor of a. It is necessary to have such a formu-
lation in order to be able to estimate the SNBP of the systemwithout
having to solve a new PF problem at different loading conditions.
The HEM formulations published in the past, do not allow one to
scale the load by a factor of a, since they solve the given power-
flow problem at a = 1.0, because they are consistent with the power
system equations only at a = 1.0. This will be explained in more
detail in Section ‘‘Formulation with a simple germ”. Consider the
following set of holomorphically embedded equations, where (4)
represents the PBE for PQ buses, (5) represents the voltage magni-
tude constraint for the slack bus, (6) represents the PBE for the PV
buses, (7) represents the voltage magnitude constraint for the PV
buses and (8) represents the PBE for PV buses on var limits.

XN
k¼1

YikVkðaÞ ¼ aS�i
V�

i ða�Þ ; i 2 m ð4Þ
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