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a b s t r a c t

Aggregations of flexible loads can provide several power system services through demand response pro-
grams, for example load shifting and curtailment. The capabilities of demand response should therefore
be represented in system operators’ planning and operational routines. However, incorporating models of
every load in an aggregation into these routines could compromise their tractability by adding exorbitant
numbers of new variables and constraints.
In this paper, we propose a novel approximation for concisely representing the capabilities of a hetero-

geneous aggregation of flexible loads. We assume that each load is mathematically described by a convex
polytope, i.e., a set of linear constraints, a class which includes deferrable loads, thermostatically con-
trolled loads, and generic energy storage. The set-wise sum of the loads is the Minkowski sum, which
is in general computationally intractable. Our representation is an outer approximation of the
Minkowski sum. The new approximation is easily computable and only uses one variable per time period
corresponding to the aggregation’s net power usage. Theoretical and numerical results indicate that the
approximation is accurate for broad classes of loads.

� 2016 Elsevier Ltd. All rights reserved.

Introduction

Demand response (DR), the coordinated control of flexible
loads, can render great benefits to power systems and is recognized
as an essential new source of flexibility for renewable integration
[1]. DR activities are now widely engaged in by third party compa-
nies, utilities, and system operators. Comprehensive surveys on DR
are provided by [2–4]. In this paper, we refer to the entity control-
ling a collection of loads as the load aggregator.

System operators must integrate DR into their operational rou-
tines to fully leverage its capabilities. For example, multiperiod
optimal power flow or unit commitment can be used to perform
load-shifting using DR alongside energy storage [5,6]. This is chal-
lenging because the loads in DR programs are often small, diverse,
and numerous; a typical aggregation may contain upwards of 106

loads. Exactly representing the loads of multiple DR aggregations
within multiperiod optimal power flow could add millions of
new variables and constraints, making it computationally

intractable [7–9]. Moreover, the individual load models may be
known to the load aggregator but not the system operator.

To overcome these difficulties, load aggregators need concise
models of their loads’ aggregate characteristics, thus enabling
them to share their capabilities with the system operator without
describing every load individually. System operators can then
straightforwardly incorporate such a model into tasks like multi-
period optimal power flow or unit commitment as they would a
conventional resource like grid-scale storage [10]. Because the
model is concise, i.e., consisting of a small number of variables
and constraints, it does not increase the difficulty of the system
operator’s tasks. We further discuss the role of DR and concise
modeling within multiperiod optimal power flow in Section ‘‘Role
within power system operations”.

In this paper, we develop a concise, approximate representation
for aggregations of loads modeled by convex polytopes, i.e., sets of
linear constraints. Since we only deal with convex polytopes, we
will henceforth omit the term ‘convex’ and simply write ‘polytope’.
The set-wise sum of two sets is called the Minkowski sum, and is
computationally intractable even for polytopes. As observed in
[8,11], the flexibility of an aggregation of polytopic loads is
captured by the Minkowski sum, which we define in Section
‘‘Load aggregation as Minkowski sums”. Approximate Minkowski
sums are an active research area, but most work focuses on the
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calculation of two and three-dimensional sums of highly complex
polytopes as in [12,13]. In Section ‘‘Extension to general poly-
topes”, we develop a novel outer approximation of the Minkowski
sum, which is easily computable in polynomial-time. Our method
is generally applicable regardless of dimension, and also results
in a polytope in RD, where D is the number of time periods. This
makes it easy to incorporate into optimization routines for power
system operations without sacrificing tractability.

A number of existing papers describe techniques for concisely
modeling large collections of loads, which we now summarize.
Work on this topic has been on-going since the 1980s beginning
with [14] and more recently in [15–17], which model the probabil-
ity distribution of temperatures in spaces controlled by thermo-
static loads using a partial differential equation. Thermostatic
loads are a particular focus area within DR work as they represent
almost 20% of load in industrialized countries such as the U.S. [18].
In [19], the authors model the control of a collection of thermo-
static loads using a second-order LTI system and design a con-
troller to achieve desired power outputs and then return the
aggregate system to steady-state.

Our work is closely related to several recent papers that approx-
imate a collection of loads as generalized energy storage. In [9],
charging electric vehicles are modeled as deferrable loads, and ana-
lytical generalized storage expressions for their aggregate capabil-
ities are obtained. Aggregations of thermostatic loads are
approximated as time-varying thermal batteries in [20,21] and as
generalized batteries in [8]; the latter derives inner and outer gen-
eralized battery models to represent a collection of thermostatic
loads. The storage models obtained in these papers consist of linear
constraints, similar to the polytope-based framework employed in
this paper. In [22], the exact Minkowski sum is identified as a mea-
sure of a power systems total flexibility. In [23,11,24], the Min-
kowski sum is identified as the aggregate flexibility of a
collection of loads, and is used to quantify and visualize flexibility.
In [11], reduced-order stochastic-hybrid models are developed for
multiple types of loads, which can then be combined. Their
approach approximates the Minkowski sum using a discrete
approximation of load parameters and states, which allows them
to incorporate uncertainty such as random electric vehicle arrivals.
Whereas our approach is most suitable under steady-state condi-
tions, their approach is designed for real-time control.

The contributions of the paper are as follows:

� An novel outer approximation is given for the Minkowski sum
of flexible loads described by polytopes with the same A matrix
(shape) in Section ‘‘Polytopes with the same shape”. Note that
we make no approximation to the individual loads’ parameters
beyond the polytope assumption.

� We extend the outer approximation to the Minkowski sum of
general polytopes in Section ‘‘Extension to general polytopes”,
and give a procedure for optimizing the approximation.

� We numerically characterize the performance of the approxi-
mation in Section ‘‘Numerical examples” using volume-based
error metrics and by simulation within optimal power flow.

� We show analytically that the approximation is exact for loads
described by hypercubes and simplices Section ‘‘Analytical
results”.

Background

Notation

A polytope is a set in RD whose boundary is composed of flat
surfaces called facets [25]. These facets are derived from hyper-
planes and are sets in RD�1. We denote polytopes using bold script

with subscripts for differentiation between them, e.g.,
P1;P2; . . . ;Pk. We restrict our attention to polytopes that are closed
and bounded, i.e., compact.

The points within a polytope can be represented as convex com-
binations of the extreme points of the polytope [26]. We denote
points (or vectors) using lowercase italicized letters, e.g., x; y. The
set of vertices of such polytopes then form a minimal unique (up
to ordering) representation for a polytope. Such a representation
is referred to as the V-representation of a polytope. Sets of vertices
are denoted using uppercase letters with a bar, e.g., X;Y .

An alternate representation for a polytope is as the intersection
of a collection of half-spaces (referred to as the H-representation of
a polytope). In the H-representation, each half-space generates a
facet of the polytope and is represented as a linear inequality,
e.g., aTx 6 b. A minimal H-representation contains only inequalities
corresponding to facets of the polytope with non-zero area, and is
unique up to ordering and scaling. The H-representation is gener-
ally preferred to the V-representation for DR because it is the form
of almost all load models.

We use uppercase letters to represent matrices and subscripts
to indicate that a set or matrix is associated with a particular poly-
tope. We may write the H-representation of a polytope in matrix
form as A1x 6 b1, and denote it by the matrix–vector pair ðA1; b1Þ.
The polytope can also be written explicitly as P1 ¼ fx jA1x 6 b1g
We use the term A-matrix to refer to the matrix A1 of a polytope
in H-representation.

Example 1. Consider a triangle in R2. In, V-representation, we may
denote it by its set of vertices as X1 ¼ fð0;0Þ; ð1;0Þ; ð0;1Þg. In H-
representation, we may denote it by the matrix–vector pair
ðA1; b1Þ, where

A1 ¼
�1 0
0 �1
1 1

2
64

3
75; b1 ¼

0
0
1

2
64

3
75:

Note how in this case, the vertices of the polytope are generated by
solving the equalities associated with each inequality. In general,
the vertices of a polytope will be generated from the solution of
equalities associated with adjacent facets.

V-representations and H-representations of a polytope can be
derived from each other. Conversion from the H-representation to
the V-representation is known as vertex enumeration; the reverse
problem is known as facet enumeration. Unfortunately both of the
above problems are, in general, NP-hard [27]. For polytopes that
are bounded, the complexity of vertex and facet enumeration
remains open [28]. No tractable solutions to these problems are
currently known.

Additionally, while the above refers to minimal V-representations
and H-representations, both may contain redundant information.
In the V-representation, this implies the inclusion of points lying
inside the polytope. In the H-representation, this implies the
inclusion of non-binding inequalities (i.e. inequalities that do not
generate a facet of the polytope as their associated hyperplanes
either lie outside the polytope or are tangent to it at a single point).
Testing a component of either representation for redundancy can
be done with linear programming [29].

Role within power system operations

Large aggregations of flexible loads are valuable resources for
power system operators and hence should be represented in power
system dispatch routines. Multi-period optimal power flow is a
standard approach to dispatching power systems with dynamic
constraints such as ramping and storage capacity limits [30]. Since
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