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a b s t r a c t

The short-term optimal hydrothermal scheduling (STOHS) plays one of the most important roles in power
systems operation. The STOHS problem involves the solution of difficult constrained optimization
problems that require good computational techniques. This paper proposes a modified chaotic
differential evolution (MCDE) approach for the solution of this difficult optimization problem. A repair
strategy and a novel selection operation are simultaneously introduced into the MCDE approach for
handling constraints of the problem. The repair strategy preserves the feasibility of solutions generated
and avoids the use of penalty factors as much as possible. The introduced selection operation makes a not
clearly distinction between feasible solutions and infeasible ones at early stage of the algorithm and
makes a clearly distinction at the later stage. Additionally, an adaptive regeneration operation is proposed
to enhance population diversity and to avoid local optimums. Moreover, a chaotic local search technique
is introduced also to accelerate the searching process of the algorithm. The proposed MCDE approach is
applied to three well-known hydrothermal test systems in order to verify its feasibility and efficiency.
The obtained results are compared with those obtained by other population-based heuristic approaches
reported in literature. It is observed from the comparisons that the proposed MCDE approach performs
effectively and can yield competitive solutions.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The short-term optimal hydrothermal scheduling (STOHS)
problem is one of the most important issues in the optimal
operation of interconnected power systems [1,2]. The problem
refers to determine the optimal hydro discharges of hydro plants
and the optimal power generation from thermal plants over a
schedule horizon so as to minimize the total thermal cost. It is very
difficult to solve this complicate optimization problem within the
consideration of various hydraulic and operational constraints.

Several heuristic methods have been proposed aiming at the
solution of this STOHS issue due to their nature of neglecting non-
linear, differentiable and even the convex of the optimization prob-
lem. Orero and Irving [3] introduced a genetic algorithm modeling
framework and solution technique for the short-term optimal
scheduling of hydrothermal system. The desired final reservoir
levels were treated as soft constraints that can be either violated
or relaxed in their work. Sinha et al. [4] employed an improved fast

evolutionary programming technique for the STOHS. The final res-
ervoir levels were satisfied by calculating the hydro discharges of a
dependent time interval randomly chosen in their work. However,
the calculated discharges may not satisfy their limits and a penalty
function approach had to be employed for constraint violations.
Genetic algorithm (GA) [5–9], simulated annealing (SA) [10–11],
evolutionary programming (EP) [12], neural network [13–15], par-
ticle swarm optimization (PSO) [16–20], etc. have been introduced
in succession to solve various STOHS problems in recent years.

Differential evolution (DE), as a heuristic method for minimiz-
ing continuous space functions, was proposed by Storn and Price
[21] in 1995. It is found to be quite simple and efficient for those
non-linear, non-differentiable continuous optimization problems.
DE has been successfully applied to various power system optimi-
zations and proved to have competitive performance compared
with other stochastic evolutionary techniques published in
literature. To our best knowledge, Lakshminarasimman and
Subramanian [22] first proposed to adopt differential evolution
algorithm to solve the STOHS problem. In their work, the depen-
dent hydro discharges are used to satisfy the constraints of initial
and final reservoir volumes but it still lacks handling technique
for the constraint of power load balance. Immediately following,
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they proposed a modified hybrid differential evolution [23] for the
solution of the STOHS problem. The emphasis in their modification
work was given to the handling technique for the equality con-
straints of the STOHS problem, i.e., the initial and final reservoir
volumes for hydro reservoirs and the power load balance.
However, penalty factors were still adopted to handle the other
constraint violations such as the reservoir storage volumes and
power generation of hydro plants. In the DE approach of Mandal
and Chakraborty [24] for the STOHS problem, a strategy generating
and keeping variables in feasible regions is adopted but just for
control variables. The handling technique for equality constraints
of the initial and final reservoir volumes and power system load
balance were not reported clearly either.

Recently, hybrid methods were proposed to solve the STOHS
problem in order to overcome the drawback of single intelligent
method. Generally speaking, hybrid methods can yield a better
solution with good efficiency compared with a single algorithm.
Yuan et al [25] proposed a self-adaptive parameter setting hybrid
DE approach to solve the STOHS problem. Chaotic sequences based
on logistic map instead of random sequences were adopted in their
approach to diversify the population and improve its performance
to find the optimal solution. Moreover, three simple feasibility-
based selection comparison rules were adopted in their work to
avoid the use of penalty factors. However, their approach was just
verified through a simple hydrothermal system with four intercon-
nected cascade hydro plants and an equivalent thermal plant. Lu
et al [26] proposed an adaptive chaotic differential evolution for
the STOHS problem. An adaptive dynamic parameter adjusting
strategy and a chaotic local search operation were integrated with
DE to avoid premature convergence effectively in their approach.
However, the handling technique to the equality constraints of
the problem was too complicate and more parameters should be
set in advance in their two stage constraint handling technique,
which meant coarse adjusting and fine adjusting. Moreover, selec-
tion operation based on feasibility of solutions was not favor for
enhancing the searching space at the early evolution stages
because those solutions near the global optimum but not feasible
will be drawn out compared with those ones feasible but far away
from the global optimum. Sivasubramani and Shanti Swarup [27]
proposed a hybrid method combining DE and sequential quadratic
programming (SQP) for solving the STOHS problem. DE was used as
a base level search and SQP was used to fine tune the solutions to
reach the global optimum or near global optimum in their
approach. However, the penalty factors were not avoided in their
base level search. Wang et al [28,29] proposed a differential
real-coded quantum-inspired evolutionary algorithm combined
with quantum-inspired evolutionary algorithm. In their approach,
the two stage equality constraint handling technique, one coarse
search and the other fine search were still used. The constraints
handling technique was too complicate to some extent and the
constraint violations may occur yet within this handling method.
But how to handle this type of violation was not reported in their
work.

The main contribution of this paper aims at proposing a novel
modified chaotic differential evolution (MCDE) approach for solv-
ing the STOHS problem. A repair strategy and a novel selection
operation were employed for constraint handling instead of using
penalty factors in the MCDE approach. The repair strategy main-
tained the feasibility of solutions generated by the algorithm. At
the early stage of the evolution, the novel selection operation
makes a not clear distinction between feasible solutions and
infeasible solutions, and at the later stage, it makes a clear
distinction. Additionally, an adaptive regeneration operation is
proposed in order to enhance the population diversity and avoid
local optimums. Moreover, a chaotic local search technique is
introduced also to accelerate the searching process of the

algorithm. The rest of this paper is organized as follows. The STOHS
problem is formulated in Section ‘Problem formulation’. Section
‘Overview of differential evolution algorithm’ is an overview of
the par DE algorithm. Then in Section ‘Modified chaotic DE for
STOHS problem’, the proposed MCDE algorithm is described in
detail. The effectiveness of the proposed MCDE approach for
the STOHS problem is verified through three well-known
hydrothermal test systems in Section ‘Simulation and discussions’.
At last, the conclusions are outlined in Section ‘Conclusions’.

Problem formulation

The scheduling horizon of the STOHS problem in this study is
1 day and is divided into T time intervals with each planning inter-
val as 1 h. The problem aims at obtaining the minimum fuel cost of
all thermal plants over the entire scheduling horizon by utilizing
the water resources as much as possible while satisfying the vari-
ous constraints. The objective function and various constraints are
formulated as follows.

Objective function

The objective function for the STOHS problem is expressed
mathematically, as

minimize F ¼
XNs

i¼1

XT

t¼1

f iðPsitÞ ¼
XNs

i¼1

XT

t¼1

ðai þ bi � Psit þ ciP
2
sitÞ ð1Þ

where F is the total fuel cost from all thermal plants over the entire
scheduling horizon; Ns is the number of thermal plants; Psit is the
power generation from thermal plant i at time interval t; fi(Psit) is
the fuel cost function of the ith thermal plant, and it is usually
represented as follows with consideration of valve loading point effect.

f iðPsitÞ ¼ ai þ bi � Psit þ ciP
2
sit þ di � sinðei � ðPmin

si � PsitÞÞ
��� ��� ð2Þ

where ai; bi; ci; di and ei are constant coefficients and Pmin
si is the

minimum generation of thermal plant i.

Constraints

(1) Power load balance
XNs

i¼1

Psit þ
XNh

i¼1

Phit ¼ PdðtÞ þ PlðtÞ t ¼ 1;2; . . . ; T ð3Þ

where Nh is the number of hydro plants; Phit is the power gener-
ation from hydro plant i at time interval t; Pd(t) is the power
demand of the system at time interval t; Pl(t) is the total trans-
mission loss of the system at time interval t and it can be calcu-
lated using the B matrix loss formula [2] as follows.

PlðtÞ ¼
Xg

i¼1

Xg

j¼1

PsitBijPsjt þ
Xg

i¼1

B0iPsit þ B00 ð4Þ

where B, B0 and B00 are the coefficients of the corresponding
power system. The power generation from hydro plant i at time
interval t is calculated using a quadric function of the initial res-
ervoir volume and the hydro discharge at the time interval as
follows.

Phit ¼ c1iV
2
hit�1 þ c2iQ

2
hit þ c3iVhit�1Q hit þ c4iVhit�1 þ c5iQ hit

þ c6i ð5Þ

where Vhit is the final storage volume of reservoir i at time inter-
val t and Vhit-1 is the initial reservoir volume at time interval t; Qhit

is the discharge of reservoir i at time interval t; c1i; c2i; c3i; c4i; c5i

and c6i are the constant coefficients.
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