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a b s t r a c t

Transient stability assessment (TSA) of large power systems by the conventional method is a time con-
suming task. For each disturbance many nonlinear equations should be solved that makes the problem
too complex and will lead to delayed decisions in providing the necessary control signals for controlling
the system. Nowadays new methods which are devise artificial intelligence techniques are frequently
used for TSA problem instead of traditional methods. Unfortunately these methods are suffering from
uncertainty in input measurements. Therefore, there is a necessity to develop a reliable and fast online
TSA to analyze the stability status of power systems when exposed to credible disturbances. We propose
a direct method based on Type-2 fuzzy neural network for TSA problem. The Type-2 fuzzy logic can prop-
erly handle the uncertainty which is exist in the measurement of power system parameters. On the other
hand a multilayer perceptron (MLP) neural network (NN) has expert knowledge and learning capability.
The proposed hybrid method combines both of these capabilities to achieve an accurate estimation of
critical clearing time (CCT). The CCT is an index of TSA in power systems. The Type-2 fuzzy NN is trained
by fast resilient back-propagation algorithm. Also, in order to the proposed approach become scalable in a
large power system, a NN based sensitivity analysis method is employed to select more effective input
data. Moreover, In order to verify the performance of the proposed Type-2 fuzzy NN based method, it
has been compared with a MLP NN method. Both of the methods are applied to the IEEE standard
New England 10-machine 39-bus test system. The simulation results show the effectiveness of the
proposed method in compare to the frequently used MLP NN based method in terms of accuracy and
computational cost of CCT estimation for sample fault scenarios.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Nowadays, the continues trend to increase in load demands
along with economic and environmental constraints for building
new power plants and transmission lines, have lead power systems
to operate closer to their limits which increases the occurrence
probability of transient stability problem [1,2].

The analysis and methods that are used to determine if a system
is safe or unsafe (based on pre-established criteria) is typically
referred as power system security assessment. An electric power
system might have many changes in the system operating
conditions or configuration; therefore, planning phase transient
stability studies, would not be reliable for an operational system,
so continuous system analysis is necessary for operators to take

proper preventative control actions if insecure system conditions
occurred.

The primary objective of transient stability analysis (TSA) in a
power system is to determine the capability of power system to
remain in stable and safe operating condition when a large distur-
bance such as severe lightning strike, loss of heavily loaded trans-
mission line, loss of generation station, or short circuit on buses [3]
influences the system. CCT is a well-known indicator that can be
used to measure power system transient stability. The CCT is the
maximum time duration by which the disturbance may act on
the power system without losing its capability to recover to a
steady-state (stable) operation.

We can broadly classify security analysis depending on model-
ing and used technique into static and dynamic category [3,4]. Sta-
tic security assessment is related to an equilibrium point of system,
where voltage and thermal limits are observed. Generally static
security assessment is done using computational tools based on
load flow algorithms. The contingencies events must be considered
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to ensure an acceptable steady-state condition, even if one element
of the system is lost.

Evaluation of the ability of a power system to withstand a finite
set of contingencies and to survive the transition to an acceptable
steady-state condition is defined as dynamic security assessment
(DSA) [4]. As illustrated in Fig. 1, DSA consists of three main cate-
gories: rotor angle stability, voltage stability and frequency stabil-
ity. Also the rotor angle stability is divided into two sub categories
which are small signal stability and transient stability [3,5]. In this
paper we focus on TSA which involves the evaluation of the ability
of a power system to maintain synchronism under severe but cred-
ible contingencies. The DSA studies are usually conducted in a time
range between 3 and 5 s for small power systems. For large sys-
tems with dominant inter-area swings this time may extend to
10 s [5].

Two main categories of TSA methods are time domain simula-
tion (or numerical integration) method and direct method. Cur-
rently, the widely used method by power utilities and most
accurate method for TSA is time domain simulation method [5,6].
This method is implemented by solving the differential equations
of power network while the direct method involves in calculation
of the transient energy margins which shows the system stability
limits. This method gives an accurate information about state vari-
ables and can be applied to any level of detail of power system
models [1,4,7]. In Ref. [37] the concept of lyapunov exponents
(LEs) is used to analyze the transient stability of power systems.
Also in Ref. [40]; a stochastic-based approach to evaluate the prob-
abilistic transient stability index of the power system incorporat-
ing the wind farm is proposed.

However, use of such a method requires numerical solution to
nonlinear equations of system which has high online computation
cost and involves intensive and time-consuming numerical
integration efforts. Also, the difficulty of designing good energy
functions for multi-machine power systems may lead to computa-
tional inefficiency and inaccuracy [5,6]. So, it does not provide
information regarding the degree of stability and the degree of
instability in a power system.

In addition, TSA of large sized power systems has become a very
complex process due to the exponential expansion of complexity in
power system topology. For each disturbance many nonlinear
equations should be solved that makes the problem too complex
and will lead to delayed decisions in providing the necessary con-
trol signals for controlling the system. Therefore, there is a neces-
sity to develop a reliable and fast online TSA to analyze the stability
status of a power system when exposed to credible disturbances.

On the other hand, direct method techniques require less online
computation efforts and can provide a quantitative measure of the
degree of system stability, but it has some challenges and limita-
tions involved in the practical applications for power system TSA

[5]. In recent years, machine learning and computational intelli-
gence techniques, such as artificial neural networks (ANNs), have
been proposed as promising approaches to solve some complex
power system protection and control problems instead of simulat-
ing the power system equations for TSA in power systems [5,6,8–
17]. These approaches can quickly obtain a nonlinear mapping
relationship between the input data and the output and can
approximate solutions of power system’s differential equations
[6]. There are two ways in using ANN for power system TSA, one
way is using ANN as a regression function to predict transient sta-
bility degree[8–13], such as CCT and system stability margin;
another way is using the ANN as a classifier to directly classify
the system into either stable or unstable states [14]. There are
many different types of NN such as MLP NN and radial basis func-
tion (RBF) NN which can be used in different applications.

The feed-forward NN, also best known as MLP NN, was the first
and most simple type of NN devised. It was developed in early
1970s and is the most popular topology in use today. This NN con-
sists of an input layer, an output layer, and one or more hidden lay-
ers. In this NN the information only moves in forward direction.
Data flows into the NN through the input layer, passes through
the hidden layer and finally flows out of the NN through the output
layer. There are no cycles or loops in the network. These networks
can be constructed from different types of units such as binary
McCulloch-Pitts neurons. But frequently are devised as continuous
neurons, with sigmoidal activation function in the context of back
propagation of error. The MLP NN can be considered as simple
interpolation of input–output model, with NN weights as free
parameters. Such NN configuration can model functions of almost
any arbitrary complexity. The function complexity is determined
with the number of layers and the number of neurons in each
layer.

Another frequently used NN in the literatures is RBF NN [15,16].
RBF NN is powerful method for interpolation in multidimensional
space. The RBF can be replaced by the sigmoidal hidden layer in
MLP NN. The structure of the RBF NN consists of three layers
namely, the input layer, the hidden (or RBF) layer, and the output
layer. The nodes within each layer are fully connected to the previ-
ous layer. The input nodes are directly connected to the hidden
layer neurons. Usually a Gaussian function is used in each node
in RBF layer to determine distance of inputs with respect to the
mean of the Gaussian function. A linear combination of hidden
layer values that represents mean predicted output is generated
in the output layer when RBF NN is used in regression problems.
When RBF NN is used in the classification problems, the output
layer is representing a posterior probability. The output is typically
a sigmoid function of a linear combination of RBF layer values.

In RBF NN each input datum is associated with a RBF kernel
function such as support vector machine method. In this approach

Fig. 1. Taxonomy of power system stability methods.
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