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a b s t r a c t

Novel consequence-based framework for electric power providers is proposed. This framework includes
six performance objectives, such as reputation, health and safety, environmental, financial, reliability, and
system conditions. The six performance objectives are quantified with the consideration of 41 key
performance indicators (KPIs). The framework is illustrated with a case study of 10 Canadian power
utilities. Furthermore, a sensitivity analysis is undertaken to identify importance of the KPIs on the
decision framework.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

An electrical power transmission system consists of power gen-
erating stations, substations, and supervisory control and data
acquisition (SCADA) facilities, where all sub-systems (components)
are inter-connected through transmission lines. To ensure safe,
economical, and reliable delivery of electricity, comprehensive
transmission planning is required [1,2]. However, this is not an
easy task due to the consistent exposure of today’s society to low
probability high consequence (LPHC) events, such as earthquakes,
floods and terrorist attacks. In response to such events, risk
assessment has been used as one of the main decision-making
tools in the electrical power industry [3–6].

Risk assessment of power systems, however, requires consider-
ation of technical, organizational, and human factors in order to
achieve a complete representation of the system. Different
modeling techniques have been developed for managing such
complex systems and interaction between several variables. These
techniques include fault trees, Petri nets, Markov chains, and
Bayesian belief networks (BBNs). One of the major advantages of
BBN is the ability to model dependencies between variables, man-
age non-linear interaction, such us low probability (and high con-
sequence) events, and integrate different kind of information about
the system such as expert knowledge, measurement data, feedback

experience and information regarding the system behavior. For
these reasons, many applications of risk analysis for complex sys-
tems using BBN is reported [4–9].

BBN have also been extensively used in different area of
electrical power systems such as reliability [10–14], fault diagnosis
of the system [15–17], cascading effects [18], and risk assessment
[19–23]. Despite the maturity of this field within electrical power
systems, these applications are focused on a technical analysis of
the system, leaving aside the human and social factors which play
an important role in maintenance and operation. In order to
address this, the proposed approach presents a novel conse-
quence-based framework, which includes different objectives of a
electrical power system, such as people-related, service-related,
environmental and economic. The proposed framework encom-
passes three steps: (1) establish performance matrices and trans-
formation functions, (2) generate relative importance weights
and (3) perform consequence-based analysis.

The remaining sections are organized as follows. In section
‘Introduction’, a literature review introduces previous work on
Bayesian belief networks theory and applications. In section
‘Bayesian belief networks and applications’, a consequence-based
framework is developed, consisting of a brief introduction of the
methodology (including identification of key performance indica-
tors) and the main steps for building the Bayesian belief network
(including performance matrices generation, and the weight and
network generation). In section ‘Consequence-based framework’,
a sensitivity analysis of the belief network is used to conduct a
consequence-based analysis. In section ‘Sensitivity analysis’, the
framework is applied to a case study of consequence-based
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assessment for Canadian provinces. Finally, conclusions and rec-
ommendations are presented.

Bayesian belief networks and applications

BBN also known as Bayesian Net, Causal Probabilistic Network,
Bayesian network or simply belief network, is a graphical model
that permits a probabilistic relationship among a set of variables
[24]. A BBN is a Directed Acyclic Graph, where the nodes represent
variables of interest and the links between them indicate informa-
tional or causal dependencies among the variables. The uncertain-
ties in a BBN model are described through subjective probability
[24]. As depicted in Fig. 1 [25], a BBN is composed of:

(a) a set of variables (e.g. A1;A2 and B3) and a set of directed
links between the variables;

(b) a set of mutually exclusive states for each variable (e.g. for
A1;A2 and B3 the states are {L, M, H}); and,

(c) an assigned conditional probability for each variable with
‘‘parents’’, which will be defined shortly (e.g. for B3).

The relations between the variables in a BBN are expressed in
terms of family relationships, where a variable A1 is said to be
the parent of B3 and B3 the child of A1 if the link goes from A1 to
B3 (Fig. 1). The dependencies are quantified by conditional
probabilities for each node given its parents in the network. These
dependencies are quantified through a set of conditional probabil-
ity tables (CPTs); each variable is assigned a CPT of the variable
given its parents (Fig. 1). In the case of a variable with no parents,
the probabilities are reduces to the unconditional probability (UP)
(e.g. A1 and A2, Fig. 1).

The main concept of a BBN is rooted in the use of Bayes
theorem, in which the relation between two nodes, hypothesis H
(parent) and evidence E (child) is represented as:

pðH j EÞ ¼ pðE j HÞ � pðHÞ
pðEÞ ð1Þ

where pðH j EÞ is one’s belief for hypothesis H upon observing evi-
dence E; pðE j HÞ is the likelihood that E is observed if H is true,

pðHÞ is the probability that the hypothesis holds true, and pðEÞ is
the probability that the evidence takes place. pðH j EÞ is known as
posterior probability and pðHÞ is called prior probability [24].

Fundamentally, a BBN is used to update probabilities as new
information is obtained. The network supports the computation
of the probabilities of any subset of variables given evidence about
any other subset. The efficacy of a BBN is realized in its flexibility to
capture top-down inference, observing the cause (or parent) and
inferring the possible effect (or child) and bottom-up inference,
observing the effect (child) and inferring the possible cause
(parent).

Assigning unconditional probabilities

The unconditional probabilities (UPs) of the basic input param-
eters, often, are not known a priori, consequently, equal weights
(1=n, where n is number of category considered for each basic
input) can be assigned using the principle of insufficient reasoning
(see for example [26]). For example, if the states for A1 are catego-
rized as Low (L), Medium (M), and High (H), the UPs will be
PðA1 ¼ LÞ ¼ 1=3; PðA1 ¼ MÞ ¼ 1=3, and PðA1 ¼ HÞ ¼ 1=3. However,
from the evaluation, with certainty, if the state of A1 is determined
to be H, the UPs will be PðA1 ¼ LÞ ¼ 0; PðA1 ¼ MÞ ¼ 0, and
PðA1 ¼ HÞ ¼ 1. Indeed, if there is still uncertainty with the state
of A1, the appropriate values should be used. In a case where for
example, 25 basic input parameters are involved (parameters
without any parents), and, if states of all input parameters are
not known, the 1=n probability assignment will be useful.

Assigning conditional probabilities

The conditional probabilities shown Fig. 1 that will be used in
Eq. (1) can be obtained through expert knowledge elicitation
[27,28], or training from data [29]. Where multiple experts are con-
sidered, credibility of each decision maker on the decision can be
elicited by considering experience and confidence on the assess-
ment [30,31].

The elicitation of knowledge is a process used to determine
probabilities of certain events that allow the elicitor to draw con-
clusions about the system. A group of experts should be establish

Fig. 1. Schematic of a Bayesian belief network.
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