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a b s t r a c t

A novel method is proposed in this paper to determine the time-delay stability upper-bound of the power
system with wide-area damping controllers based on the improved free-weighting matrix and General-
ized Eigenvalue Problem (gevp). First, a new class of Lyapunov–Krasovskii functional is constructed and
its derivative function along the system is gained. Second, necessary loose items are added to the deriv-
ative function to reduce conservativeness, and the time-delay stability criterion based on the improved
free-weighting matrices is formed. And then the time-delay stability criterion is equivalently trans-
formed to a generalized eigenvalue problem. Thus by solving the gevp, the time-delay stability upper
bound of the system is gained. Time-domain simulation tests on the IEEE 4-machine 11-bus system
and IEEE 16-machine 68-bus system verify the correctness and effectiveness of the method.

� 2014 Published by Elsevier Ltd.

Introduction

In view of the time-delay problem in feedback controller design
based on wide area information, which may affect the control
effect, even leading to negative damping [1–5], research on the
time-delay stability upper bound of the system is of great need.

The current research methods can be sorted into three catego-
ries: time-domain method, frequency-domain method and direct
method. The time domain method is able to determine the stability
of the system under certain circumstances. However, further
research is required concerning the acquisition of information such
as the stability degree and the time-delay stability upper bound.
The frequency-domain method is able to reveal the variation char-
acteristic of the time-delay system to some extent by seeking the
key eigenvalue of the system in the real space. However, the
calculation speed is low due to large computation. Based on the
Lyapunov theory and the Linear Matrix Inequality (LMI) technique,
the direct method is able to take into account both the time-delay
randomness and the switch link, thus can be more widely applied.
However, the direct method is relatively conservative and much
study has been conducted on how to reduce its conservativeness
[6–11].

For the time-delay system stability problem, the Lyapunov–Kra-
sovskii functional is widely used due to its consideration for the
influence of the system past on the system variation rate. The main
idea of the Lyapunov–Krasovskii functional is as follows. First, a
positive definite functional containing explicit time-delay is con-
structed. Second, the derivative of the functional along the system
trajectory is calculated. And then, according to the Krasovskii
stability theorem, the sufficient condition of the system stability
criterion could be obtained. Ref. [12] by Park et al. and Refs.
[13,14] use the improved Lyapunov–Krasovskii functional that
contains multiple integral items, the result of which is less
conservative. However, the multiple integral items also add to
the difficulty in dealing with the derivative of the functional. More
inequalities will be needed to bound the cross terms in the deriv-
ative of the Lyapunov–Krasovskii functional, which will limit the
reduction of conservativeness. Refs. [15,16] use the delay-parti-
tioning approach to partition the time-delay region into N + 1
sub-regions, and then use a sub-optimization method to determine
the time-delay partition parameters, so that the conservativeness
could be reduced. However, this method greatly adds to the com-
putational complexity, with a very limited reduction in conserva-
tiveness. Refs. [17,18] apply the integral inequality method to
time-delay stability analysis, which is simple in form with fewer
matrix variables, and is easy for theoretical analysis and calcula-
tion. However, the conservativeness is often widely divergent
due to different amplification degrees of different methods.
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In order to further reduce the conservativeness of the direct
method, a novel method is proposed in this paper to determine
the time-delay stability upper-bound of the power system wide-
area damping controllers based on the improved free-weighting
matrix and Generalized Eigenvalue Problem (gevp). First, a new
class of Lyapunov–Krasovskii functional is constructed and its
derivative function along the system is gained. Second, necessary
loose items are added to the derivative function to reduce conser-
vativeness, and the time-delay stability criterion based on the
improved free-weighting matrices is formed. And then the time-
delay stability criterion is equivalently transformed to a
Generalized Eigenvalue Problem (gevp), thus by solving the gevp
the time-delay stability upper bound of the system is gained.
Time-domain simulation tests on the IEEE 4-machine 11-bus
system and IEEE 16-machine 68-bus system verify the correctness
and effectiveness of the method.

Time delay model of the power system

The state equation of a multi-input multi-output power system
is

_xðtÞ ¼ AxðtÞ þ BuðtÞ
uðtÞ ¼ KxðtÞ

�
ð1Þ

where x 2 Rn is the system state vector, u 2 Rm is the control input
vector, A 2 Rn�n is the system state matrix, B 2 Rn�m is the system
control matrix. When there are different types of supplementary
controllers in the system, the control information is all included
in B.

The closed-loop system after the state feedback is:

_xðtÞ ¼ CxðtÞ ð2Þ

where C is the closed-loop state matrix. C = A + BK, where B 2 Rn�m

is the integrated state feedback matrix of different supplementary
controllers.

In actual power system, the control input vector is transmitted
to the controllers via SCADA/WAMS. During the signal transmis-
sion, certain time delay is unavoidable. Thus, the corresponding
closed-loop system can be described as follows:

_xðtÞ ¼ AxðtÞ þ BKxðt � dðtÞÞ ð3Þ

Seen from (3), the time-delay matrix of the power system is
Ad = BK. For system with time-delay links, the state equation takes
the following form:

_xðtÞ ¼ AxðtÞ þ Adxðt � dðtÞÞ; t > 0
xðtÞ ¼ uðtÞ; t 2 ½�h;0�

�
ð4Þ

where x(t) 2 Rn is the state vector. A and Ad are the state matrix and
time-delay matrix respectively. h is the time-delay stability upper
bound.

In (4), the time delay d(t) meets inequalities (5) and (6):

0 6 dðtÞ 6 h ð5Þ

_dðtÞ 6 l ð6Þ

Time delay stability criterion
For the time-delay system stability problem, the Lyapunov–

Krasovskii functional is widely used due to its consideration for
the influence of the system past on the system variation rate. Early
time-delay system stability research is focused on the time-delay
irrelevant type, i.e. the system stability is not related with whether
there is time delay in the system, and the Lyapunov–Krasovskii
functional selected is usually:

V0ðxÞ ¼ V01ðxÞ þ V02ðxÞ
V01ðxÞ ¼ xTðtÞPxðtÞ
V02ðxÞ ¼

R t
t�d xTðsÞQxðsÞds

8><
>: ð7Þ

where xðtÞ is the system state vector, d is a constant time delay. P
and Q are positive definite symmetrical matrix variables to be
determined.

Calculate the derivative of (7) concerning t, so that the following
stability criterion can be gained:

PAþ ATPþ Q PI
ITP �Q

" #
< 0 ð8Þ

where I is the unit matrix.
The time-delay irrelevant stability criterion in (8) does not

contain time-delay relevant information. For systems with small
time delay, the criterion is very conservative. For systems with
relatively big time delay, the criterion usually fails to determine
the system stability correctly. The deficiencies of the time-delay
irrelevant stability criterion greatly boost the research on time-
delay relevant stability. In such research, the maximum time-delay
upper bound that guarantees system stability is the main index to
evaluate the conservativeness of the time-delay relevant condi-
tions. And a quadratic form double integral item V03ðxÞ is added
to the Lyapunov–Krasovskii functional shown in (7), i.e.

V0ðxÞ ¼ V01ðxÞ þ V02ðxÞ þ V03ðxÞ
V01ðxÞ ¼ xTðtÞPxðtÞ
V02ðxÞ ¼

R t
t�d xTðsÞQxðsÞds

V03ðxÞ ¼
R 0
�d

R t
tþh

_xTðsÞZ _xðsÞds dh

8>>>><
>>>>:

ð9Þ

where Z is a positive definite symmetrical matrix variable to be
determined.

According to the Lyapunov–Krasovskii stability theorem, the
time-delay relevant stability criterion of (9) could be obtained.
However, how to deal with the quadratic form double integral item
resulting from the derivation is a critical problem which could
affect the conservativeness of the time-delay relevant stability cri-
terion. The free weighting matrix method is able to deal with the

Nomenclature

x system state vector
u control input vector
y output vector
A system state matrix
B control input matrix
C output matrix
K control matrix
Ad time-delay matrix
d(t) time delay

h time-delay stability upper bound
P symmetric positive definite matrix
Q symmetric positive definite matrix
Zi symmetric positive definite matrix
N free weighting matrix
S free weighting matrix
M free weighting matrix
I unit matrix
Yi supplementary matrix

J. Ma et al. / Electrical Power and Energy Systems 64 (2015) 476–482 477



Download	English	Version:

https://daneshyari.com/en/article/6859954

Download	Persian	Version:

https://daneshyari.com/article/6859954

Daneshyari.com

https://daneshyari.com/en/article/6859954
https://daneshyari.com/article/6859954
https://daneshyari.com/

