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a b s t r a c t

This paper presents a step towards the design of robust non-fragile power system stabilizers (PSSs) for
single-machine infinite-bus systems. To ensure resiliency of a robust PSS, the proposed approach pre-
sents a characterization of all stabilizers that can guarantee robust stability (RS) over wide range of oper-
ating conditions. A three-term controller (x1 + x2s)/(1 + x3s) is considered to accomplish the design.
Necessary and sufficient stability constraints for existing of such controller at certain operating point
are derived via Routh–Hurwitz criterion. Continuous variation in the operating point is tackled by an
interval plant model where RS problem is reduced to simultaneous stabilization of finite number of
plants according to Kharitonov theorem. Controller triplets that can robustly stabilize vertex plants are
characterized in a similar manner. The most resilient controller is computed at the center of maxi-
mum-area inscribed rectangle. Simulation results confirm robustness and resiliency of the proposed
stabilizer.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Power system stabilizers (PSSs) are often used to provide sup-
plementary feedback stabilizing signals through the excitation sys-
tems. Therefore, the stability limit of power systems can be
extended by PSSs which can enhance system damping at low fre-
quency oscillations associated with electromechanical modes
[1,2]. The conventional PSS commonly used in practice is a
dynamic output feedback, a lead controller type, with a single or
double stage and uses the speed deviation Dx as a feedback signal
[3]. Conventional fixed-parameter PSS may fail to maintain system
stability over wide range of operating conditions or at least leads to
a degraded performance once the deviation from the nominal point
becomes significant. Consequently, design of robust PSSs becomes
a priority to cope with uncertainties imposed by continuous varia-
tion in operating points. Synthesis of robust PSSs has been one of
the most celebrated research areas in power system control. Over
the past three decades or so, several methods have been developed
that enable a PSS to cope with parametric uncertainties in the plant
dynamics [4–11]. This is true for both types of uncertainties: struc-
tured and unstructured. A common divisor of these methods is that
they rely on the celebrated YJBK parameterization [12] of all stabi-
lizing controllers for a fixed linear time-invariant plant, which pro-

vides a free parameter over which an appropriate function of a
closed-loop transfer function may be minimized. Elegant tech-
niques for minimizing H1, H2 and L1 norms of different closed loop
transfer functions have been developed using this parameteriza-
tion [4,5]. Moreover, efficient numerical approaches have been
subsequently developed [10,11]. Although these methods cope
with uncertainty in the plant dynamics, they all assume that the
derived parameters of a PSS are precise and exactly implemented.
In practice it turns out, however that these gains cannot be imple-
mented exactly (due to resistors’ tolerance used with operational
amplifiers implemented for continuous-time PSS) leading to fragil-
ity problem [13,14]. This raises an important issue that is a robust
PSS can be very sensitive, or fragile, with respect to errors or per-
turbations in the controller coefficients and thus system instability
may occur. In turn, that brings about a fundamental problem in
robust control system design, which has been recently termed
the fragility problem, and hence the design of non-fragile control-
ler opens up as an important research topic that deserves further
investigations. Continuous-time PSS implementation uses opera-
tional amplifiers with resistors having tolerances in the range of
±5% to ±20%. For discrete-time PSS implementation, imprecision
is also expected in analog–digital and digital–analog conversion
circuits. Consequently, PSS design has to be able to tolerate some
uncertainty in the controller parameters as well as the plant
dynamics. Fragility problem of a robust PSS in power system liter-
ature is a new topic except for [15]. Static output feedback design
that permits for controller perturbation is suggested in [15] where
speed deviation (Dx) and rotor angle deviation (Dd) are used for
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static feedback and two feedback gains have been computed. The
feedback gain of Dx can allow for a perturbation of +7.2% of its
nominal values while that (Dd) has to be implemented exactly.

In this paper, the design of a robust and non-fragile PSS is pre-
sented to cope with uncertainties in power system dynamics and
tolerate the perturbations in the PSS itself. To realize a robust first
order PSS, necessary and sufficient stability conditions are derived
using Routh–Hurwitz (RH) criterion. The stability boundaries
derived by RH criterion are then plotted in the controller parame-
ter-plane (x1 � x2) with fixed x3 where the stability region is exam-
ined. Thereafter, the PSS pole time constant is allowed to vary over
the typical range considered in PSS industry. The intersection of
stability regions at different operating points with x3 ¼ ½x�3 xþ3 �
can help characterize all stabilizing controllers, if it exists. Eight
Kharitonov vertex plants are computed for an interval plant model
considered to capture all uncertainties in operating point. Thus, the
aforementioned approach can be applied only eight times where
intersection of stability regions can easily be examined. Such
graphical representation of the controller solution set can help
select a point in the set such that its minimum distance to the
region boundary is maximized, i.e. the center of the maximum-
area inscribed rectangular.

The paper is organized as follows. Section ‘Problem statement’
describes the uncertainties of a simple power system. In Section
‘Robust versus non-fragile: overview’, an overview of robust and
non-fragile control is presented. Necessary and sufficient con-
straints for characterizing all robust stabilizing PSSs are derived
in Section ‘Robust PSS design’. Selection of the most resilient PSS
is reported in Section ‘Non-fragility analysis’. Simulation results
are considered in Section ‘Simulation results’. Finally, Section ‘Con-
clusion’ concludes the paper.

Problem statement

The test system comprises a single-machine connected to an
infinite-system through a tie lie line. Such infinite system may rep-
resent The venin’s equivalent of a large interconnected power sys-
tem. System dynamics are represented by four non-linear

differential equations as given in [8]. Nonlinear model and data
of the system are given in the Appendix A where the symbols are
standard and have their usual meaning as given in [1]. The block
diagram for linearized model of such system as proposed by deM-
ello and Concordia [1] is shown in Fig. 1. The model parameters
(k1, . . ., k6) are load-dependent and have to be computed at each
operating point given by active and reactive powers P, Q.

These parameters can be expressed as explicit functions in P
and Q as derived in [8]. Open loop transfer function (TF) is in turn
load-dependent and hence it is more convenient to accomplish the
design. At any operating point, such TF has a general form given by:

GpðsÞ ¼
Dx
DU
¼ �b1s

a4s4 þ a3s3 þ a2s2 þ a1sþ a0
ð1Þ

The coefficients a0, a1, a2 and b1 vary according to a vector q
which consists of two independent quantities P and Q, i.e.,
q ¼ ½P Q � while a3 and a4 are always constant and independent
of machine loading. Simply, any change in P, Q leads to correspond-
ing changes in a0, a1, a2 and b1. Therefore, if P and Q vary over their
prescribed intervals, i.e. P 2 ½P� Pþ� and Q 2 ½Q� Qþ�, Eq. (1)
describes a family of plants rather than a nominal plant. Since
a0, a1, a2 and b1 depend simultaneously on q, this family of plants
can be approximated by an interval plant where:

a4 ¼ ½a4 �a4�; a3 ¼ ½a3 �a3�; a2 ¼ ½a2 �a2�; a1 ¼ ½a1 �a1�;
a0 ¼ ½a0 �a0�; b1 ¼ ½b1

�b1� ð2Þ

where

½ai �ai� ¼ ½ min
P2½P P�;

Q2½Q Q �ai

ai= max
P2½P P�;

Q2½Q Q �ai

ai�; i ¼ 0;1; . . . ;4

Robust stability of this interval plant implies that of the family
of plants. However, instability of such interval plant does not imply
instability of such family of plants. Stability of interval plants is
often studied via Kharitonov theorem [12,16].

Fig. 1. Block diagram of the linearized model [1].

Fig. 2. Uncertain plant with perturbed controller.
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