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a b s t r a c t

Allocation of flexible AC transmission systems (FACTS) devices is a challenging power system problem.
This paper proposes a new particle swarm optimisation (PSO) variant, called enhanced leader PSO
(ELPSO), for solving this problem. This algorithm is capable of solving FACTS allocation problem in a
way leading to lower amounts of power flow violations, voltage deviations and power losses with respect
to other optimisation algorithms. Distributed thyristor controlled series compensators (D-TCSC’s) are
used. D-TCSC’s are installed at all branches except those with regulating transformers. The reactances
of D-TCSC’s are found in optimisation process. ELPSO features a five-staged successive mutation strategy
which mitigates premature convergence problem of conventional PSO. ELPSO and other optimisation
algorithms are applied to IEEE 14 bus and 118 bus power systems for N-1 contingencies and also for
simultaneous outage of four branches. The results show that it leads to lower amounts of power flow vio-
lations, voltage deviations and power losses with respect to conventional PSO (CPSO) and eight other
optimisation algorithms including genetic algorithm (GA), gravitational search algorithm (GSA), galaxy
based search algorithm (GBSA), invasive weed optimisation (IWO), asexual reproduction optimisation
(ARO), threshold acceptance (TA), pattern search and nonlinear programming (NLP).

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Line outage contingencies in power systems are likely to result
in overloads in branches, voltage deviations in buses and excessive
power losses [1–5]. Using FACTS devices is the most common
approach for alleviating such consequences [6]. Since overloads
are the main concern in line outage contingencies and thyristor-
controlled series compensators (TCSC’s) are effective in power flow
control, they are used for mitigating consequences of line outage
contingencies [6]. When FACTS devices are intended to be utilised
in a power system, they should be allocated optimally. From opti-
misation perspective, optimal allocation of FACTS devices is a very
complex optimisation problem, because it is highly multi-modal,
multi-objective and constrained [7,8]. Heuristic approaches are
the most common and efficient approaches for solving FACTS allo-
cation problems [7,9–11]. Among heuristics, particle swarm opti-
misation (PSO) has some advantages which make it popular in
solving FACTS allocation problems [12–15]. The advantages of
PSO are as follows.

� It does not require preconditions such as continuity or dif-
ferentiability of objective functions [7].

� In comparison with most other heuristic optimisation algo-
rithms, it has less control parameters to be tuned by user.

� It provides fast convergence [16].
� Its computational burden is relatively low [17].

Despite all PSO advantages, it suffers from a crucial drawback
called premature convergence [18–26], that is, particles tend to
converge into local optima instead of the global one. The reasons
of premature convergence in PSO are twofold:

� Since all particles of swarm are highly attracted toward the
swarm leader, they converge quickly without enough
exploration of different regions of search space. Therefore,
PSO possesses weak exploration capability that leads to
premature convergence [27].

� When the particles converge into a region in search space
including a local optimum, they will stagnate and there is
no mechanism for jumping out particles from that region
[28].
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Due to PSO’s premature convergence, in TCSC allocation prob-
lem during contingencies, it is not able to find a near-global solu-
tion. Therefore, considerable amounts of overloads, voltage
deviations and power losses are obtained.

There exist different approaches for mitigating premature con-
vergence in PSO [29–31]. Although these approaches lead to miti-
gation in premature convergence to some extent, they have some
shortcomings that should be addressed.

� The explorative capability is not decreased during the run
[32,33].

� In most cases, the mutated object is transferred to the new
position whether it leads to a lower objective value or not
[34–36].

� In most cases [32,37–41,34–36,42–45], the mutations are
applied to positions or velocities of particles, while apply-
ing mutation to the leader may enhance the leader and
attract all the particles toward better regions of search
space (regions with lower objective values).

� They do not provide any mechanism for jumping out parti-
cles after stagnation [46–48].

Removing the shortcomings of existing premature convergence
mitigation strategies can lead to a more efficient approach for miti-
gating premature convergence. Therefore, in this research, it is
intended to develop a PSO variant addressing the mentioned short-
comings of existing premature convergence strategies. In this
research, distributed TCSC’s (D-TCSC’s) are used. The new proposed
PSO variant is expected to outperform existing optimisation algo-
rithms in solving D-TCSC allocation problem during line outage
contingencies.

Different optimisation algorithms have been applied to solve
FACTS allocation problem in power systems. In [49], real coded
genetic algorithm is applied to maximise available transfer capa-
bility (ATC) of power systems with static var compensator (SVC)
and TCSC. In [50], bacterial foraging optimisation algorithm (BFOA)
is applied to maximise power system damping with TCSC. The
results show that BFOA outperforms GA.

In [51], artificial bee colony (ABC) as a heuristic algorithm with
strong exploration capability is hybridised with sequential qua-
dratic programming (SQP) as an algorithm with strong exploitation
capability. This is to benefit from the advantages of both algo-
rithms. The hybrid ABC–SQP is applied to maximise damping of
power system with SVC devices. The results showed the superior-
ity of the hybrid ABC–SQP over ABC and GA. In [52], a harmony
search algorithm is applied to find optimal location and setting
of SVC’s and static synchronous compensator (STATCOM) units.
The objective is to maximise voltage stability and minimise power
losses. In [53], differential evolution (DE) is used to find optimal
location and setting of unified power flow controller (UPFC)
devices in order to maximise power system security during single
contingencies. In [54], gravitational search algorithm (GSA) is used
to find optimal setting of UPFC devices in order to minimise fuel
cost of generating units. In [55], evolution strategy (ES) is applied
to find optimal setting of SVC, STATCOM, UPFC and static synchro-
nous series compensator (SSSC) in order to minimise power losses.
In [56], simulated annealing and Tabu Search are applied to find
optimal setting of SVC in order to maximise power transfer capa-
bility in power system. In [57], optimal location and setting of
SVC and TCSC devices are determined via PSO. The objective is to
maximise small signal stability. In [58], PSO is utilised to find opti-
mal location and setting of SVC, TCSC and UPFC devices. The objec-
tive is to maximise power system loadability and minimise
installation cost of FACTS devices.

This paper is organised as follows; in Section ‘Enhanced leader
PSO (ELPSO)’, the proposed PSO variant (Enhanced leader PSO) will

be introduced in details. The D-TCSC allocation problem is formu-
lated in Section ‘D-TCSC description and problem formulation’. The
procedure for applying ELPSO to D-TCSC allocation problem is elab-
orated in Section ‘Procedure of ELPSO application’. The results and
analysis of results will be presented in Section ‘Results and analysis’.
Finally, the conclusions are presented in Section ‘Conclusions’.

Enhanced leader PSO (ELPSO)

PSO starts with random initialisation of a swarm of particles in
the n-dimensional search space (n is the dimension of problem in
hand) [59]. Each particle keeps two values in its memory; its
own best experience whose position and objective value are called
Pi and Pbest respectively and the best experience of the whole
swarm, named swarm leader, whose position and objective value
are called Pg and gbest respectively. The position and velocity of par-
ticle i is denoted with the following vectors:

Xi ¼ ðXi1;Xi2; . . . Xid; . . . ;XinÞ

Vi ¼ ðVi1;Vi2; . . . Vid; . . . ;VinÞ

At each iteration t, the velocities and positions of particles are
updated according to the following equations [60]:

Vidðt þ 1Þ ¼ xVidðtÞ þ C1r1dðPid � XidÞ þ C2r2dðPgd � XidÞ ð1Þ

Xidðt þ 1Þ ¼ XidðtÞ þ Vidðt þ 1Þ ð2Þ

where x represents inertia weight, C1 and C2 are cognitive and
social acceleration coefficients respectively. Symbols r1d and r2d

represent two random numbers in [0,1].
In this research, a novel PSO variant called enhanced leader PSO

(ELPSO) is developed by addressing the mentioned shortcomings of
existing premature convergence mitigation strategies. In ELPSO, at
each iteration a five-staged successive mutation strategy is applied
to swarm leader. After applying each mutation, if the mutated Pg

has better objective value than the current Pg, it takes the position
of current Pg. By applying this successive mutation strategy to
swarm leader, swarm leader is enhanced, so a more efficient search
is done.

At the first stage of the successive mutation strategy, Gaussian
mutation is applied to swarm leader as below.

Pg1ðdÞ ¼ PgðdÞ þ ðXmaxðdÞ � XminðdÞÞ: Gaussian ðo; hÞ for
d ¼ 1;2; . . . ;n ð3Þ

where Xmax (d) and Xmin (d) represent upper and lower bounds of
decision vectors in dth dimension respectively and h is standard
deviation of Gaussian distribution. If the fitness of Pg1 is better than
the fitness of Pg, then Pg1 takes the position of Pg (better fitness is
equal to lower objective).

The standard deviation of the Gaussian distribution is decreased
linearly during the run as Eq. (4). This is to ensure that the explo-
ration capability is stronger at initial iterations and it fades out
during the run to result in more exploitative capability.

hðt þ 1Þ ¼ hðtÞ � ð1=tmaxÞ ð4Þ

where t and tmax represent current iteration number and maximum
number of iterations respectively.

At the second stage of the successive mutation strategy, Cauchy
mutation is applied to swarm leader as below.

Pg2ðdÞ ¼ PgðdÞ þ ðXmaxðdÞ � XminðdÞÞ: Cauchy ðo; sÞ for
d ¼ 1;2; . . . ;n ð5Þ

where s is scale parameter of Cauchy distribution which is
decreased linearly during the run as Eq. (6). This is also to ensure
that the exploration capability decreases during the run.
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