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a b s t r a c t

The present paper provides an extended analysis of a microgrid energy management framework based on
Robust Optimization (RO). Uncertainties in wind power generation and energy consumption are
described in the form of Prediction Intervals (PIs), estimated by a Non-dominated Sorting Genetic
Algorithm (NSGA-II) – trained Neural Network (NN). The framework is tested and exemplified in a micro-
grid formed by a middle-size train station (TS) with integrated photovoltaic power production system
(PV), an urban wind power plant (WPP) and a surrounding residential district (D). The system is described
by Agent-Based Modelling (ABM): each stakeholder is modeled as an individual agent, which aims at a
specific goal, either of decreasing its expenses from power purchasing or increasing its revenues from
power selling. The aim of this paper is to identify which is the uncertainty level associated to the
‘‘extreme’’ conditions upon which robust management decisions perform better than a microgrid man-
agement based on expected values. This work shows how the probability of occurrence of some specific
uncertain events, e.g., failures of electrical lines and electricity demand and price peaks, highly conditions
the reliability and performance indicators of the microgrid under the two optimization approaches: (i) RO
based on the PIs of the uncertain parameters and (ii) optimization based on expected values.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Renewable energies are promising solutions to the energetic
and environmental challenges of the 21st century [1,2]. Their
integration into the existing grids generates technical and social
challenges related to their efficient and secure management.

From this point of view, a closer location of generation and con-
sumption sources in decentralized microgrids is expected to
increase service quality for the consumers by decreasing transmis-
sion losses and the time needed to manage fault restoration and
congestions. However, energy management can become critical
in the microgrid, due to possible conflicting requirements or poor
communication between the different microgrids elements [3].

Therefore, there is a need of frameworks for efficient microgrid
energy management.

A way to model microgrids and the related individual goal-ori-
ented decision-making of the microgrid elements is that of Agent-
Based Modeling (ABM) [4–6], which allows analyzing by simulat-
ing the interactions among individual intelligent decision makers
(the agents). The most widespread application of this modeling
approach concerns the bidding strategies among individual agents,
who want to increase their immediate profits through mutual
negotiations and by participating in a dynamic energy market
[7–10]. Recent studies show the extension of the ABM approach
to more complex interactions in the energy management of hybrid
renewable energy generation systems [6,11,12]. In these works,
the long-term goals are focused on the efficient use of electricity
within microgrids, e.g., the planning of battery scheduling to
locally store the electricity generated by renewable sources and
reuse it during periods of high electricity demand [11]. However,
the decision framework is commonly developed under determinis-
tic conditions, e.g., those of a typical day in summer.
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To account for the variability and randomness of the opera-
tional and environmental parameters of the energy systems, sev-
eral optimization techniques have been progressively introduced
for handling uncertainty [13]. Fuzzy mathematical programming
models and their extensions have been developed for optimal
management of hybrid energy systems [14,15]. Stochastic pro-
gramming models, where the uncertain parameters are described
by probability distributions, and interval programming models,

where the uncertainty is described by intervals [16,17], have been
used to deal with different sources of uncertainty in optimization
problems, like economic-energy scenarios planning [18], design
of renewable systems for community energy management [19],
and water quality and waste management [20,21].

In this paper, we propose an analysis of a microgrid energy
management framework based on Robust Optimization (RO) previ-
ously proposed by the authors [22]. The analysis is intended to

Nomenclature

t time step (h)
Fpas

t passengers flow through TS at time t (number/h)
st average solar irradiation at time t (W/m2)
vt average wind speed at time t (m/s)
El

t energy required for inside and outside light-
ing in the train station at time t (kW h)

Eelev
t energy required for passengers lifting in the

train station at time t (kW h)
Eelec

t energy required for electronic equipment in
the train station at time t (kW h)

ETS
t total hourly required energy in the train

station at time t (kW h)
ED

t total hourly required energy in the district at
time t (kW h)

PPV
t available energy output from the photovoltaic

generators installed in the train station at
time t (kW h)

PWPP
t available energy output from the wind power

plant at time t (kW h)
STS

t and SD
t portions of energy purchased from the external

grid by the TS and D, respectively (kW h)
LTS

t and LWPP
t portions of energy sold to the external grid by

the TS and WPP, respectively (kW h)
VPV

t and VWPP
t portions of energy sold to the district and gen-

erated by the PV panels of the TS and WPP,
respectively (kW h)

RTS
t and RTS

t�1 energy levels in the train station battery at
time t and t � 1, respectively (kW h)

RD
t and RD

t�1 energy levels in the district battery at time t
and t � 1, respectively (kW h)

RTS,stor energy portion that the train station battery is
capable of charging or discharging during
time t (kW h)

RD,stor energy portion that the district battery is
capable of charging or discharging during
time t (kW h)

dTS;ch
t and dTS;dis

t binary variables which model that the train
station battery can either only be charged or
discharged at time t

dD;ch
t and dD;dis

t binary variables which model that the district
battery can either only be charged or dis-
charged at time t

RTS,max the maximum train station battery charge
(kW h)

RD,max the maximum district battery charge (kW h)
T time horizon considered for the optimization

(h)
aTS and aD total costs for TS and D, respectively,

for time period T (€)
aWPP total revenue for WPP in time period T (€)
cp

t and cs
t average hourly costs of purchasing and selling

1 kW h from the external grid, respectively, at
time t (€/kW h)

cD
t average hourly cost per kW h from the bilat-

eral contract agreed with D at time t (€/kW h)

b and c coefficients defining the minimum amount of
energy to be sold to D by TS and WPP, respec-
tivelyeEtD expected energy demand for D (for the moment,
considered without uncertainty) at time step
t, predicted by TS and WPP (kW h)eV PV

t and eV WPP
t energy portions, which TS and WPP are ready

to sell to D at time step t (kW h)bPWPP
t level of uncertainty quantified for the robust

optimization at time t (kW h)
PWPP;ub

t and PWPP;lb
t upper and lower prediction bounds of WPP

power output at time t, respectively (kW h)
s simulation time period composed of Ns time

steps of one hour (h)
LOLE Loss of Load Expectation, characterizing the

probability of unsatisfied electricity demand
during h/s

LOEE Loss of Expected Energy, quantifying the
expected amount of energy losses during kW h /s

Pt available capacity in the microgrid at time
step t (kW h)

Et energy demand in the microgrid at time step t
(kW h)

Prt(Pt < Et) probability of loss of load at time step t
Et � Pt energy portion that the system is not able to

supply at time step t (kW h)
LWPP;c

t and VWPP;c
t portions of energy contracted by the WPP to the

external grid and microgrid, respectively (kW h)
LWPP;�

t and VWPP;�
t actual portions of energy provided by the WPP

to the external grid and microgrid, respec-
tively (kW h)

TWPP
t imbalance cost generated by wind power

plant at time step t (€)
dWPP;�

t energy imbalance generated by wind power
plant at time step t (kW h)

cD;þ
t and cD;�

t prices for positive and negative imbalances,
respectively, at time step t (€/kW h)

cC and cP performance ratio calculated over a simula-
tion period of Ns hours by normalizing the
imbalance cost by the actual expenses/ reve-
nues calculated in the case of perfect forecast
(%)

Thw and Tn constants denoting the average annual dura-
tion of high and normal wind conditions,
respectively, over the time period Ttot (h)

kwind(vt) and knorm failure rates at high and normal wind condi-
tions (occur./y), respectively

fv(vt) weight factor caused by severe weather
f d

t and f h
t weight factors for hourly and daily variations,

respectively
rnorm reference restoration time during normal

weather conditions, modeled as a random
variable with lognormal distribution
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