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a b s t r a c t

This paper presents a novel Primal–Dual Interior Point Method (PDIPM) based sensitivity approach for
efficient assessment of the impact of uncertainties in Multi-objective Optimization (MO). This shall aid
in robust decision making. The MO problem considered, in this paper, is the Environmental–Economic
dispatch (EED) problem. The two objectives, i.e. the emission and economic cost, are continuous convex
functions. The uncertainties in the system parameters such as loads (or injections) and limits on line
flows and voltage magnitudes, are assumed to be of fuzzy type, more specifically in an interval. Results
for the IEEE 30 bus system have been obtained using the proposed approach and compared with those
obtained by Monte Carlo Simulations (MCS) and Particle Swarm Optimization (PSO) based on Harmony
Search (HSPSO). The results obtained provide interesting insights on how uncertainties in input data can
affect decision making in MO.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Multi-objective Optimization (MO) has been an area of research
for over two decades now. It serves as an important decision making
tool when two or more conflicting objectives are optimized in a fea-
sible solution space, formed by certain equality and inequality con-
straints [1]. Ever since, MO has had myriad of applications in many
fields. A few to mention are aerospace engineering [2], communica-
tions [3], production research [4], finance [5], supply chain manage-
ment [6], water demand assessment [7,8] and power systems [9]. A
good review on applications of MO can be seen in [10–13].

Pioneering work in MO applications to power systems can be
seen in [9,14–16] with the most notable contributions being in
[17–19]. Among the various MO applications to power systems,
most of the literature consists of solving the two objective EED
problem. A few recent contributions in EED problem have been
in [20–23]. The EED problem solves for the minimization of the
economic generation costs and the resultant emissions while sub-
ject to the satisfaction of the power balance equations and a set of
certain operational and physical constraints [22].

Most of the methods in literature for solving the EED problem
make use of the meta-heuristic algorithms and their variants [9].
A few notable methods are the Genetic Algorithms (GA) and it’s
variants [17–19], PSO and it’s variants (such as HSPSO [24]) and

Differential Evolution Algorithm [25] with it’s variants [26].
Through these methods, a set of non-dominated pareto optimal
solutions (otherwise, more commonly known as pareto optimal
front) is generated in a single run [23]. From this set of solution,
the decision maker then chooses a best compromised solution
[19] for actual system operation or planning. Albeit their popular-
ity, these algorithms, being stochastic in nature [23], are computa-
tionally burdensome and do not guarantee the same pareto
optimal front and consequently, same best compromised solution
in each run.

There also exist techniques in which the EED problem has been
solved as a single objective optimization problem such as
[15,23,27,28]. In [15], the EED problem has been solved with the
total generation cost as the single objective while the total emis-
sion is a constraint. In [27], both cost and emission objectives have
been coupled into a single objective through the use of weights.
[23] also uses a similar formulation but is modeled as a semidefi-
nite programming problem. In [28], one of the objectives is mini-
mized while the other objective is a constraint bounded within
an allowable tolerance � and thus, the name of this approach is
the epsilon (�) constraint method. These proposed approaches
can be easily solved by classical techniques such as PDIPM [29],
provided the objective functions and other constraints are contin-
uous and convex. In order to obtain the entire set of desired num-
ber of non-dominated pareto optimal solutions, multiple runs of
PDIPM are required (one run each for each of the pareto solution)
in each of these approaches. However, the total computational
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time involved in multiple PDIPM runs is expected to be consider-
ably less than that of an evolutionary algorithm such as HSPSO.

Further, any optimization problem requires a set of known input
data. For the EED problem, this set of input data constitutes the
nodal demand forecasts, non controllable renewable generations,
load models, network parameters, cost and emission characteristics
and limits on line flows, voltages and generations [30]. Generally,
this data set is not known with complete certainty. Consequently,
several approaches [30–33] for modeling uncertain data in single
objective optimization problem have been proposed. To represent
uncertain data which is repetitive in nature, probability density
functions [31] are generally used. Another common way of repre-
senting the uncertainty in system data is through the use of fuzzy
membership functions [32]. Boundary representation [30] is a very
special case of fuzzy membership functions in which the uncertain
data varies in an interval or a range with crisp 0 and 1 possibilities.

Attempts for robust MO applications in power systems are very
few in literature [34–37]. Also, most of these robust MO applica-
tions make use of meta-heuristic algorithms to obtain the best
compromised robust solution. The computational burden of these
applications is thus expected to be huge as optimization with
uncertainties further leads to enhanced computational effort, apart
from what is already because of use of meta-heuristic algorithms.
Further, a detailed assessment on how the pareto optimal front
gets affected because of the uncertainties in the input data has
not been studied yet.

This paper here, thus, attempts to develop a simple yet efficient
approach for assessing the impact of input data uncertainties on
the pareto optimal front in an EED problem. This is expected to
aid in robust decision making. The input data, i.e. nodal loads, lim-
its of inequality constraints, network parameters, etc., are assumed
to be uncertain within given specified intervals or bounds. The
approach shall provide possible pareto optimal fronts in the pres-
ence of these uncertainties. The proposed approach is a sensitivity
based approach, wherein the sensitivities are obtained from the
Lagrange multipliers of PDIPM. These sensitivities indicate possible
objective functions’ minimum or maximum values for a given set
of uncertain interval input data. The EED problem considered here
has continuous convex objectives and constraints and is modeled
as a single objective optimization problem with the other objective
considered as a constraint. PDIPM [29] is used to solve this. The use
of PDIPM leads to the efficiency of this approach (even though mul-
tiple PDIPM runs are required) when compared to using HSPSO for
this uncertain EED problem. Thus, in a nutshell, the main contribu-
tions of this paper are as follows.

H To efficiently assess the impact of uncertain input data on
the pareto optimal front of the EED problem by solving it
with PDIPM [29].

H To show how the best compromised solution shall possibly
change in presence of these uncertainties.

The paper is organized as follows: Section ‘Deterministic EED
problem’ describes the general deterministic EED problem and its
model which is to be solved by PDIPM. The sensitivity analysis of
the objectives in this problem with respect to system changes is
given in Section ‘Sensitivity analysis’. Section ‘Proposed approach’
presents the proposed approach for assessing the impact of uncer-
tain input data on the pareto optimal front of the EED problem.
Results for the IEEE 30 bus system are given in Section ‘Results’.
The paper summarizes in Section ‘Conclusion’.

Deterministic EED problem

The EED problem is discussed in this section. A general
deterministic EED problem solves for the minimization of two

conflicting objectives, i.e. economic fuel cost and emission, subject
to the set of power balance equations and a set of inequality con-
straints such as bus voltage magnitude limits, line flows and real
and reactive generation limits. It can be stated as follows

Min: ½f 1ðxÞ; f 2ðxÞ�
s:t: gðxÞ ¼ 0

h 6 hðxÞ 6 h

ð1Þ

where x is the variable vector which includes generations and bus
voltages. f 1 and f 2 are the total fuel cost and total emission func-
tions, respectively, which can be stated as

f 1 ¼
XNg

i¼1

aiP
2
gi þ biPgi þ ci ð2Þ

f 2 ¼
XNg

i¼1

ciP
2
gi þ biPgi þ ai ð3Þ

where Ng is the number of generators. Pgi is the ith generator active
power. ci; bi; ai and ai; bi; ci are the respective emission and cost
characteristics coefficients of the ith generator.

Equality constraints g are the power flow equations while
inequality constraints h include limits on active power flows, gen-
erations and bus voltage magnitudes at all buses. h and h are the
respective lower and upper limits on h. The line active power flow
constraint is of the form

�Pl 6 Pij 6 Pl ð4Þ

where Pl is the upper limit of line active flow Pij between buses i� j.
The best form of solution for a MO is in the form of pareto opti-

mal front which shows different compromise solutions. This is
generally solved by meta-heuristic algorithms like HSPSO [24].
Although for convex problems, classical PDIPM type solution is
possible using � constraint approach [28], the quality of the pareto
optimal front is better in the former over the latter. However, the
computational efficiency of latter is far better than the former. In
view of this, a simple technique is proposed (along with the use
of PDIPM) to obtain a pareto front which is a best compromise
between these two requirements.

In this technique, the first half of the specified number of pareto
solutions are obtained by considering cost as objective and emis-
sion as constraint while the second half is obtained in a vice versa
manner. Thus in the first variant, economic cost f 1 is considered
the objective while emission f 2 is a constraint, which can be stated
as

Min: f 1ðxÞ
s:t: f 2ðxÞ 6 f sp

2

gðxÞ ¼ 0

h 6 hðxÞ 6 h

ð5Þ

where f sp
2 is some specified emission value. In the second variant,

emission f 2 is considered as objective while cost f 1 is a constraint.
This can be stated as

Min: f 2ðxÞ
s:t: f 1ðxÞ 6 f sp

1

gðxÞ ¼ 0

h 6 hðxÞ 6 h

ð6Þ

where f sp
1 is some specified cost value.

Let the number of desired non-dominated pareto optimal solu-
tions be 2N where N is a natural number. In effect, 2N PDIPM runs
are required to obtain these distinct solutions. The 1st and 2Nth
solution points are the two extremes on the pareto front. These
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