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a b s t r a c t

To the stochastic nature of unit commitment problem induced by wind power fluctuation, an interval
optimization combined with point estimation method (IO-PEM) is proposed to model and solve stochas-
tic security constrained unit commitment (SCUC) problem. Considering reasonable fluctuation range of
wind power, an interval optimization model is established which takes two worst-case scenarios to
replace all scenarios in the interval. This model accelerates the solution speed on the premise that the
scheduling result meets security constraints. At the same time, in order to accurately evaluate corrective
dispatching cost caused by wind power fluctuations and make the scheduling scheme more economic,
two kinds of point estimation method: 2M and 2M + 1 schemes, are introduced to improve the accuracy
of the interval optimization approach. Comparison studies are done with the proposed method over three
conventional methods: Monte Carlo method, the scenario reduction method and the interval optimiza-
tion method, on the six-bus system and the modified IEEE 118-bus system, the simulation results show
that the proposed method has the merits in computation speed and accuracy, in the meanwhile keeping
security and economy of the dispatching scheme.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The security-constrained unit commitment (SCUC) problem
schedules the unit’s on/off status as well as it output in order to
satisfy load demand and network security constraints at minimum
operating cost over a given scheduling period (e.g., a day) [1,2]. The
SCUC plays an important role in power system short-term opera-
tion, and it is a high-dimensional multi-constrained mixed integer
programming problem [3]. In recent years, with the increase of
wind power penetration into power systems, the randomness of
wind power imposes large amount of uncertainty to the system
operation, and this turns the SCUC problem into a stochastic and
more complicated optimization problem [4].

In order to properly deal with wind power fluctuation, the con-
ventional SCUC modeling methods have been improved by
researchers in different ways. In [5], the additional up and down
reserves to compensate for wind power fluctuation are added to
the spinning reserve constraints. On the basis of [5], the maximum
wind power penetration limit is considered where the ramping
capacity available is compared against wind generation fluctuation
[6]. The above models only analyze the base scenario corresponding

to the expected or forecasted wind power, and they are determinis-
tic models. These models are relatively simple in the aspects consid-
ering the impact of wind power fluctuation on the system security
and the operating cost. Actually, those scenarios deviate from the
base one, here called ‘‘deviation scenarios’’, have greater impact
on network security and operating cost, but not been well evaluated
yet in the existing achievements.

To better consider the volatility of wind power in SCUC, sto-
chastic SCUC model is presented in [7], based on the theory of
chance constrained programming, risk constraints with a specific
probability are introduced to deal with the stochastic factors. In
some other studies, a set of possible scenarios are selected to
model uncertainties in the SCUC problem relating to, e.g., wind
power [8], load [9], generator and branch contingencies [10] and
price variations [11]. In each scenario, the outputs of non-wind
units are varying and the operating cost is calculated when satisfy-
ing the unit constraints and system constraints. In [12], the rela-
tionship between the base scenario and the deviation scenarios
for wind power volatility has been established. It is assumed that
adjusting non-wind units from the base scenario to a deviation sce-
nario should be completed in ten minutes to meet rapid wind
power volatility. In above stochastic SCUC models, each deviation
scenario is separately modeled and calculated, which can make
the scheduling scheme meet any scenario at any hour. However,
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the number of deviation scenarios is huge when accuracy is consid-
ered, which brings a great amount of computation. So it is neces-
sary to find out an efficient method for solving stochastic SCUC
problem with wind power generation. In the current studies, two
approaches have been used to solve stochastic SCUC problem,
one is scenario reduction method based on Monte Carlo simulation
[13], another is interval optimization method.

Scenario reduction method uses different probabilistic metrics
to select the best set of scenarios from large number of scenarios
generated by Monte Carlo simulation [12], and then the selected
scenarios as the representatives are used to solve the stochastic
problem. The common scenario reduction technique includes
simultaneous backward reduction [8], fast forward reduction
[14], intelligent optimization algorithms [15], and so on. For the
scenario reduction method, the accuracy of solution is closely
related to the number of the selected scenarios. If the number of
the selected scenarios is too small, the solution is poor and even
infeasible. If the number is too large, the computation amount
could increase significantly. So selecting the reasonable number
of the scenarios is still a difficulty.

Interval optimization method adopts the upper and lower
bound of the confidence interval to indicate the uncertainty

spectrum of random variables, and introduces interval numbers
into the model. The interval number optimization theory [16] is
implemented to find out the worst-case scenarios for satisfying
all constraints requirements. In [17], interval optimization method
is presented to analyze the impact of bus load uncertainty on
power system security in SCUC problem. By using full-scenario
analysis, two worst-case scenarios are obtained, and all operation
constraints corresponding to a large number of volatility scenarios
turn to the constraints to two worst-case scenarios. This method is
also applied to deal with wind power uncertainty. Interval optimi-
zation method can ensure operation security only by analyzing the
worst-case scenarios, so it has high computation efficiency. How-
ever, interval optimization method cannot accurately evaluate
the dispatch cost of those scenarios in the interval, and it cannot
take the expected cost as the objective function like [8–11] either.
To overcome this problem, this paper introduces point estimate
method to evaluate the operating cost of deviation scenarios in
the interval.

Point estimation method can calculate the statistical moments
of random output of a stochastic function with several random
input variables [18]. For a random function Z with M random input
variables, K points (K is usually taking 2 or 3) are selected as

Nomenclature

Indexes
t index of time period (in h), t 2 {1, . . . ,T},T is the schedul-

ing time horizon (24 h)
g index of thermal unit, g 2 {1 . . . ,G},G is the number of

thermal units
i index of curve segments, i 2 {1 . . . , I}, I is the number of

segments of the piecewise linear production cost
function

s index of possible wind power volatility scenario,
s 2 {1 . . . ,S},S is the number of possible wind power vo-
latility scenarios

w index of wind farm, w 2 {1 . . . ,W},W is the number of
wind Farms

d index of load node, d 2 {1 . . . ,D},D is the number of load
nodes

l index of line
k index of estimated location for the input random vari-

able of the point estimated method
m index of the input random variable of the point esti-

mated method

Parameters
v t ; �v t actual value and forecast value of wind speed at hour t
rv,t forecast standard deviation of wind speed at hour t
Pw;t; Pw;t actual value and expected value of wind power at hour t
Nw number of wind turbine generator in wind farm w
Prate rated power of wind turbine generator
vin, vr, vout cut-in, rated and cut-out wind speed
ps probability of scenario s

Su
g;t; S

d
g;t start up cost and shut down of unit g

Pmin
g ; Pmax

g minimum output and maximum output of unit g
cg,i slope of segment i of the linear cost function of unit g
Pd,t load value of node d at hour t
rd

g ; r
u
g ramp-down limit and ramp-up limit of unit g

RL,t System spinning reserve requirement at hour t
Rmax

g maximum response rate constrained spinning reserve
contribution of unit g

Xon
g;t ;X

off
g;t on and off time of unit g at hour t

Ton
g ; T

off
g minimum on and off time of unit g

DPd
g ;DPu

g down/up limits for corrective dispatch of unit g

Kl,g, Kl,w, Kl,d shift factor of unit g, wind farm w and load d with
respect to line l

Pmax
l maximum capacity of line l

Ps
w;t power output of wind farm w at hour t in scenario s

Pmax
w;t ; P

min
w;t upper and lower bounds of wind power output inter-

val at hour t
bu

w;t; b
d
w;t up and down confidence level of wind power at hour t

Pmax
Wl;t ; P

min
Wl;t upper and lower limits of power flows under all possi-

ble scenarios at hour t
xm input random variable of the point estimated method
Mj(xm), km,j j-th order central moment and standardized central

moment of xm

xm,k k-th estimate point locations of xm

xt,m,k weighting factor of the scenario corresponding to the
k-th estimation point of the m-th random variable at
hour t

Variables
F basic cost under the base scenario
E DFs

Z

� �
expected corrective dispatching cost under all deviation
scenarios

Ug,t status of unit g at hour t
Fg,t fuel cost of unit g at hour t in the base scenario
DFs

g;t corrective dispatching cost of unit g at hour t in scenario
s

Pg,t, Ps
g;t dispatching output of unit g at hour t in the base scenar-

io and the scenario s
Pg,i,t, Ps

g;i;t dispatching output of unit g at hour t at segment i in the
base scenario and scenario s

DPs
g;i;t corrective dispatching output of unit g at hour t at seg-

ment i in scenario s
Rg,t spinning reserve of unit g at hour t
DFm;k

g;t corrective cost of unit g in the scenario corresponding to
the k-th estimation point of the m-th random variable at
hour t
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