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a b s t r a c t

The incorporation of Distributed Generation (DG) under the Virtual Power Plant (VPP) concept allows the
market integration of several and largely dispersed electric power sources. One matter of concern for the
VPP owner and operator is to follow the hourly schedule regardless of the stochastic nature of some of its
sources or any unpredicted generation outages. This study presents a Decision Tree (DT) based method-
ology that prepares for the dispatching of power equivalent to the possible loss of the highest injection of
one of the sources of the VPP (according to day-ahead hourly schedule) to the rest of its sources, on an
hour-ahead horizon. This allows VPP operators to provide firm capacity and participate effectively in
the energy market.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

DG has been growing rapidly and vastly due to its high
efficiency compared to conventional generation [1]. Among the
various DG technologies, Renewable Energy Sources (RES) are
greatly favored due to their limited environmental impact [2];
notably, wind power and photovoltaics represent the core business
of this trend [3,4]. However, the aforementioned RES are greatly
dependent on weather and local topography, thus accounting for
the intermittent and stochastic nature of the relevant DG units
[5,6]. This, in turn, raises issues of less reliable power supply
[7–9] and of poor power quality [10].

Power system (PS) operators and current research in the field
focus on proactive and online strategies to deal with the above
problems. Proactively and based on RES generation forecasts [5],
power reserves are procured [8,9]. Alternatively, any excess of
RES power is curtailed [11,12], while any deficit of it is balanced
through load shedding coming from demand side management
(DSM) [13,14]. Other balancing suggestions use active power
conditioners [15] and storage devices [16]. Obviously, increasing
the available PS reserves affects PS economics [11], RES curtail-
ment discourages further penetration of sustainable generation,
DSM does not essentially solve the problem and relies on load-
shedding availability, while power conditioners and storage

require considerable investments for large-scale applications.
Lately, hybrid power stations [17] are applied as a means of RES
intermittency treatment.

In order to expand the hybrid power station paradigm and,
thus, also respond to all previously mentioned issues, the concept
of the VPP was developed in the past few years [18,19]. There
seems to be little consensus on its definition, nevertheless a
concise yet broader description of its characteristics is the follow-
ing: VPP is, essentially, the aggregation of any number of DGs in
order either to facilitate the trading of their electric energy and/
or for the purpose of jointly controlling their offer and realization
of support services to the grid.

The current work deals with the problem of ensuring firm
power capacity (FPC) [20] by a VPP. That is, for each hourly sche-
dule of the VPP’s power output and procured reserves available
from a 24-h ahead scheduling, how should the VPP re-dispatch
its resources in a fast and efficient manner in order to make up
for the loss of the DG with the largest injection at the time of
loss. Section ‘Hypotheses and market framework’ includes the
hypotheses concerning the operation of the VPP in a given market
framework and the problem specifics. Section ‘Decision trees’
offers a description of the DTs. In Section ‘DT-aided scheduling
methodology for FPC by VPP’ the suggested technique is described.
In Section ‘FPC provision by VPP on Ikaria test system’ the test
system of Ikaria is presented and the developed strategy is tested
on various scenarios. In Section ‘Comments and observations on
the methodology’ remarks on the efficiency, speed and generaliza-
tion of the technique are given. Section ‘Conclusion’ concludes this
paper and offers ideas for future work.
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Hypotheses and market framework

Distributed generation

An extensive list of modern DG and storage units is offered in
[21,22]. One should note that most of the DG technologies offer fast
cold start/reserve (small start times) and that they are fully
dispatchable [22].

Virtual power plant

A VPP may consist of various DGs connected at distant locations
in the distribution network or under a single feeder. It may also
include loads, non-interruptible and/or interruptible; the latter
subject to DSM. All distributed resources of the VPP are supposed
to be centrally controlled.

Market framework

A joint market of energy and ancillary services is assumed; the
Independent System Operator runs the day-ahead market [18].
Each participant submits bids of price q and active power P (in
kW). The VPP profit is:
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where t + 1 denotes the hour-ahead scheduling horizon, qE, qR and
qL are the prices of energy, spinning reserve and retail energy,
respectively, E is the energy sold/bought by the VPP to the market,
R is the sum of reserves of the DGs of the VPP, Load is the load
served within the VPP, C represents the cost function of each DG,
interruptible load (subscript int) or storage device (subscript str),
SC is the start-up cost of each DG, I and J are binary variables denot-
ing the operation and the start-up of each DG, respectively. The
profit is calculated as the sum of the revenues of energy (Et+1 < 0)
and reserves sold to the market by the VPP and the energy supplied
to the load within the VPP, minus the sum of the operating costs of
the DG units, of the DSM and of any start-up costs incurred during
the hour. Further details on (1) can be found in [18].

Data requirements

The following data is required:

a. The hourly schedule of the VPP (e.g. [18]), an hourly load
forecast or estimation (e.g. [23] or [24]),

b. The data required by (1) and the transfer function of all DG
units and storage devices.

A basic communication infrastructure is required for the trans-
mission of commands and data [25].

Specifics of the problem of FPC provision by VPPs

As previously mentioned, a VPP can cover an unexpected loss of
power by dispatching accordingly its available ‘‘hot’’ and ‘‘cold’’
reserves. This procedure cannot be performed in a simple and
unique way because:

– the DGs have different cost functions, start times, available mar-
gins and varying costs of fuels/feedstock, thus implying a large
number of possible combinations changing over time,

– the loads of the VPP (representing also part of the flexible load)
may deviate from the expected, due to forecasting inaccuracies,

– the load of the rest of the PS cannot be supposed to be observed
by the VPP operator but only estimated,

– there exist thermal limits of lines and loading limits of the dis-
tribution transformers shared also by DGs and

– the ‘‘hot’’ reserve may be insufficient and the ‘‘cold’’ reserve
may offer a cheaper dispatch of the power loss.

The above points describe a probabilistic constrained non-linear
optimization problem. Its analytical approach will account for a theo-
retically infinite number of possible solutions. Moreover, the stochastic
nature of certain variables of the loss dispatch (i.e. RES-based DG units
of the VPP) implies that a specific optimal dispatch may be impossible
to realize, due to available power out and below the confidence inter-
vals initially assumed. In this paper, a data-mining application is pro-
posed; Decision Trees (DT) will be used as the tool with the most
positive and suitable characteristics [26] for this problem.

Decision trees

A DT is a tree structure which extracts rules from a Learning Set
(LS) of pre-classified data [27]. In PS studies, DTs often process data
of binary sorting, i.e. True/False, Safe/Unsafe, etc. Each internal
node splits the available subset in two parts (children nodes) on
a single attribute. If the subset of a child node is pure enough with
respect to one of the classes, it is declared terminal, otherwise it is
further split. Conventionally, the left child complies with the split
criterion of the parent node, e.g. in the DT of Fig. 1, node 2 includes
the subset of the LS for which A1 P 8.2.

A terminal node can be either a leaf (acceptable purity and not
split any further) or a dead-end (not acceptable purity and not split
any further). For each leaf, the path leading to the root can be writ-
ten in the form of if-then-else statements, which can be used as
rules; e.g. the rules given from the DT of Fig. 1 are:

Rule (i): if (A1 P 8.2) then FALSE and Rule (ii): if (A1 < 8.2) and
(A7 = FALSE) then TRUE

The following characteristics have to be kept in mind:

a. The stop criteria define if the rules of the DT can be ‘‘general-
ized’’ or if the DT has been over-fitted to the LS. The split
selection methodology accounts for whether ‘‘enough’’ rules
were produced by the DT [29].

b. The DT may not perform satisfactorily on unseen cases (gen-
eralization ability) [30].

c. When for a single LS, there exist multiple DTs describing the
knowledge problem, then the DT with the highest general-
ization ability should be selected [30]. This may also apply
to the case when several similar LSs can be used to build a
DT for the same knowledge problem.

Fig. 1. Example of a univariate, binary DT.

P. Moutis, N.D. Hatziargyriou / Electrical Power and Energy Systems 63 (2014) 730–739 731



Download English Version:

https://daneshyari.com/en/article/6860204

Download Persian Version:

https://daneshyari.com/article/6860204

Daneshyari.com

https://daneshyari.com/en/article/6860204
https://daneshyari.com/article/6860204
https://daneshyari.com

