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a b s t r a c t

This paper illustrates a formulation of a continuous state space model in dq frame of the Thyristor Con-
trolled Reactor (TCR), which can be used for stability studies by eigenvalue analysis. Differently from the
previous approaches, this model is just addressed to reproduce the operation of the non-linear part of the
TCR system, without considering shunted capacitor or control system, thus obtaining a characterization
of the TCR independent from the application. A typical problem of the continuous models in dq frame of
the TCR system is the presence of an un-damped homogenous current component in the solution, which
is inconsistent with the real operation; the proposed model solves this problem improving the accuracy.
The model performance has been also evaluated in the frequency domain comparing the obtained results
with a numerical simulation of the TCR implemented by PSIM program.

� 2014 Published by Elsevier Ltd.

Introduction

Thyristor Controlled Reactor (TCR) is a power electronic system,
where the equivalent reactance of an inductor at the fundamental
frequency is varied by the control of the firing angle of the
bidirectional thyristors connected in series with it, thus varying
the conduction time of the current flowing in the inductors [1].
This system is often used in Flexible Alternating Current Transmis-
sion Systems (FACTS) with the aim to control relevant parameters
of the electrical grid. TCR shunted with a capacitor bank is a
widespread application and it can be used either in series
compensation, for instance the Thyristor Controlled Series Capaci-
tor (TCSC), or in shunt compensation, for example the Static Var
Compensator (SVC).

The design and the study of the operation of electrical systems
which include TCRs are often based on computer simulations
capable of reproducing the instantaneous current and voltage
profiles and they provide accurate results. Nevertheless these
simulations require a lot of computation time to reproduce the
operation of large electrical systems and it is necessary to apply
trial and error type studies for the identification of possible critical
operating conditions.

On the contrary, analytical models allow a faster approach to
the system design [2–4] and are suitable tools for stability analysis
(for instance eigenvalue analysis [5–8]).

Different concepts for the model development have been
investigated and they may depend on either the applications or
the type (continuous [9–14] or discrete time [15–20]), and also
other categories have been identified (based on dynamic phasors
[21–23]).

With reference to the continuous models in ‘‘dq’’ frame, a
typical problem encountered is the presence in the solution of an
un-damped homogeneous component at angular frequency �x,
which is inconsistent with the real operation of the TCR system.

A common approach observed in all the referenced models is
that the TCR, the shunted capacitor bank and sometime also the
control system are considered as a whole; therefore the accuracy
is globally evaluated and it can be not so clear if it is due to a good
TCR model or to the presence of the other elements that smooth
the non-linear and discrete operation of the TCR.

This paper presents an improved TCR continuous model which
overcomes the issue related to the un-damped homogeneous
component; it is based on a new state space formulation in the
dq frame of the TCR system only, without the shunted capacitor
bank, thus reproducing the dynamics of the TCR operation more
closely. The small signal analysis has been carried out considering
the non-linearity of the TCR system. This model can be used for
stability studies by eigenvalue analysis; it provides good accuracy
in a frequency range wider than the existing continuous models.
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A frequency domain analysis is proposed in the second part of
the paper, in order to evaluate the accuracy of the TCR model; it
compares the results of the simulations obtained by the TCR state
space model (run in Matlab simulink state space tool [24]) with
those derived from the numerical simulations of the same system
by PSIM program (an electrical transient program) [25].

The TCR continuous model

The study of the TCR system has been carried out assuming a
three phases SVC application without shunted capacitor; the block
scheme of the TCR in delta connection is shown in Fig. 1, where the
voltages and currents are represented in the dq frame.

The relation between the thyristor firing angle aL and the
equivalent star inductance L of the TCR at the fundamental
component is [1]:

LðaLÞ ¼
Lr

3 � hðaLÞ
ð1Þ

where Lr is the inductance of each branch of the TCR and the
function h(aL) is:

hðaLÞ ¼
2p� 2aL þ sinð2aLÞ

p
ð2Þ

The angle aL is related to the zero cross of the respective phase to
phase voltage on the TCR and it may vary from p/2 rad (maximum
consumption of reactive power) to p rad (consumption of reactive
power equal to 0). It may be noted that the relation is not linear.

To better appreciate the improvements of the model proposed
in this paper and described in Section ‘The improved TCR model’,
the features of a TCR continuous model for SVC applications often
proposed in the literature [9–12] are discussed first. At this
purpose, a block scheme is shown in Fig. 2, which represents the
transfer function of this model. The voltage and current variables
are given in direct-quadrature frame obtained by the dq transfor-
mation applied to the three phase system abc (the zero component
is neglected) and reported below for a generic variable x:

where x is the angular frequency at the fundamental component
of the grid (in this paper the frequency of the grid is assumed at
50 Hz and x is equal to 314 rad/s) and hr is the reference phase

angle of the dq frame. In Appendix the definitions of forward and
backward sequences in a dq frame are quoted.

The inputs of the model are the firing angle aTCR of the thyris-
tors, the synchronization angle hPLL of the Phase Locked Loop
(PLL) and the dq components of the busbar voltages ed and eq,
while the output variables are the TCR currents iTCRd and iTCRq.
The block scheme has been divided in two parts (see the two boxes
in Fig. 2), where the interface signals are ed_L and eq_L, to facilitate
the explanation of the improved model features described in the
next section.

A PLL has been assumed to synchronize the TCR to the ac input
voltages [26]; the effects of the PLL are accounted by the output
angle hPLL and the variation of the voltage phase angle hV = arc-
tan(eq/ed), as shown in Fig. 2. It is highlighted that the hPLL signal
considered here does not include the sawtooth component, but
only the average one in a period, necessary for the synchronization
with the voltage ed and eq; this means that in steady state and if ed

and eq are constant, the signal hPLL is equal to hV.
Two transfer functions G1(s) and G2(s) are used (Fig. 2) to

describe the dynamics of the TCR system [9–13]:

G1ðsÞ ¼ e�sTd

G2ðsÞ ¼ 1
1 þ sTb

ð4Þ

where G1(s) is related to the time delay Td of firing angle assumed as
the average time between two switching instants (of about one ms)
and G2(s) describes the TCR switching operation accounting for the
three phases arrangement and it is represented by a low pass filter
with time constant Tb (value between 3 and 6 ms), depending on
the conduction angle of the thyristor of the TCR.

The dq components of the TCR currents (iTCRd and iTCRq) are
calculated by the system DE of differential equations:

diTCRd
dt

diTCRq

dt

" #
¼

0 x
�x 0

� �
�

iTCRd

iTCRq

� �
þ

inpDEd

inpDEq

" #
ð5Þ

where inpDEd and inpDEq are the input dq components of the system
DE; they depend on the firing angle of the thyristor aTCR, on the

output angle hPLL of the PLL and on the voltages ed and eq; moreover,
the two transfer functions G1(s) and G2(s) of Fig. 2 are the key
elements to approximate the TCR discrete operation.

This model offers a good representation of the TCR dynamic
apart from the presence of a homogeneous component in the
TCR dq currents not consistent with the real TCR operation. The
presence of this component was already observed in the dq
voltages of the TCSC continuous models in [17,18] (in this case
an equivalent capacitor is considered, thus resulting in a duality
current–voltage with the SVC model). A mathematical justification
of the homogeneous component is given below.

The homogenous component in the TCR currents

The block DE of the TCR model accounts for the dq equations (5)
which represent the behavior of an ideal three-phase inductor. In
equivalent star configuration in the abc frame, those equations
can be written as:

Current  
iTCRd, iTCRq

Voltage 
ed, eq

θPLL

TCR control signal 

Lr/2

PLL

Lr/2

Fig. 1. The block scheme of the TCR system with the variables given in dq frame.

xdðtÞ
xqðtÞ

� �
¼ 2

3
�

cosðx � t þ hrÞ cosðx � t þ hr � 2p
3 Þ cos x � t þ hr � 4p

3

� �
� sinðx � t þ hrÞ � sin x � t þ hr � 2p

3

� �
� sin x � t þ hr � 4p

3

� �
" #

�
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