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a b s t r a c t

This paper presents a modified direct approach for the forward/backward sweep power flow method.
Taking advantage of the special topological characteristics of the radial network, an algorithm with linear
storage complexity is defined. These features are summarized in the incidence matrix, which becomes a
lower triangular matrix after the vertex ordering. This new formulation allows to solve linear systems of
equations instead of explicitly inverting matrices during the iterative process, leading to a lower compu-
tational burden. Therefore, the proposed method is time and memory-efficient. The results show that the
proposed method improves the storage and time complexity without any loss of accuracy, making it a
robust and efficient method.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Power flow is a fundamental tool for analysis, optimization and
planning of electric energy distribution systems. Many activities,
such as reconfiguration [1,2], restoration [3], long-term planning
[4], use power flow algorithms. These applications demand numer-
ous power flow solutions. For example, Guedes et al. [1] performed
up to twenty thousand power flow calculations in the large-scale
distribution system reconfiguration. Moreover, on-line decisions
become more common, increasing the demand for efficient meth-
ods. In this context, computational gains are essential for the
development of power systems.

In recent decades, several methods were developed for different
network features (e.g. topology, line parameters, load balance),
including distribution networks. Usually, distribution networks
have lines with high resistance–reactance ratio and radial configu-
ration, which may render the Jacobian matrix ill-conditioned. Par-
ticularly in the planning level, distribution networks are modeled
with balanced loads.

Specialized power flow algorithms for distribution systems
have been proposed, considering proper modification of existing
methods. In [5] an ameliorative method of Newton–Raphson is

presented, which is based on down-hill method. Penido et al.
2008 [6] proposed the use of current injections equations in the
Newton method. Novel methods were also developed as the direct
ZBR method [7]. As an alternative to the aforementioned methods,
approaches based on forward/backward sweep processes have
been proposed. These methods take advantage of the unique path
that connects any load bus to the source bus in a radial network.
The general algorithm consists of two basic steps, backward sweep
and forward sweep, which are repeated until convergence is
achieved. The backward sweep is fundamentally a current or
power flow summation from far end buses to the source bus, which
may include voltage updates. The forward sweep is a voltage drop
calculation from the source to the far end buses [8]. These algo-
rithms have different convergence criterion (e.g. maximum active
and reactive power mismatch in each node, maximum node volt-
age mismatch and/or total power losses mismatch), they are sim-
ple to implement and very fast for radial or weakly meshed
distribution systems. The speed is high due to low computational
burden to perform each iteration.

In 2003, Teng introduced a direct approach by defining the bus
injection to branch current (BIBC) matrix and the branch current to
bus voltage (BCBV) matrix [9]. AlHajri and El-Hawary developed a
method based in a single matrix, called as radial configuration
matrix (RCM), and its direct descendant matrices, the inverse and
transposed inverse [10]. Methods to incorporate three-phase trans-
formers into the forward/backward sweep-based distribution
power flow was presented by Xiao et al. in 2006 [11], Teng in
2008 [12] and Elsaiah et al. in 2011 [13]. Recent studies in sweep
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methods focus on matrix formulations in order to improve compu-
tational burden [14–17].

This work presents a new forward/backward sweep method to
solve the radial power flow problem. The topological characteris-
tics were exploited in the construction of the incidence matrix,
which allowed to solve systems of linear equations instead of
inverting matrices explicitly. The proposed method has a linear
storage complexity and a lower computational burden. A series
of tests were applied to validate and evaluate the new approach
for large-scale distribution systems. Computational test show the
feasibility and the effectiveness of the method.

Linear storage sweep power flow method

Radial network representation

Let FðV;AÞ be a directed forest, i.e. a set of independent trees,
with nR root vertices and with arcs towards respective root verti-
ces, where V ¼ fv1; . . . ; vng is the vertex set and A ¼ fa1; . . . ; ang
is the arc set. Define the root vertex set as VR # V. The arc set A

is augmented with laces at root vertices so that each arc may be
uniquely associated with its origin vertex, as shown in Fig. 1. In this
representation the vertex and arc set have the same cardinality,
Vj j ¼ Aj j ¼ n. Any radial network can have this representation by

simply adding loops at the roots.
Since each vertex v i has a unique parent vertex vpi

; pi can rep-
resent the connectivity of each vertex v i and, hence,
p 2 f1;2; . . . ;ngn can represent the connectivity of an entire forest.
For instance, the forest in Fig. 1, where n ¼ 7, can be represented by
the vector p ¼ ½3 2 2 2 5 7 7�T. This vector can be constructed
using a breadth-first search starting from root vertices as the ver-
tex ordering, as detailed in Section ‘Vertex ordering’.

The incidence matrix

A notable matrix for networks is the incidence matrix, which
becomes a square ðn� nÞ-matrix for radial networks, defined by

Di;j ¼
1 if i ¼ j

�1 if ðv i; v jÞ 2 A; i – j

0 otherwise:

8><
>: : ð1Þ

This matrix has exactly 2n� nR non-null elements and, hence, it is a
sparse matrix with linear storage (i.e. OðnÞ in the big O notation).
Furthermore, if the vertices are sorted according to their tree-level
(see Fig. 2), the matrix D becomes lower triangular. In this case, a
linear system of equations Dx ¼ b or DTx ¼ b can be solved for x
with exact n additions and, hence, linear time complexity, OðnÞ.

For instance, the incidence matrix for the forest shown in Fig. 1
would be

D ¼

1 0 �1 0 0 0 0
0 1 0 0 0 0 0
0 �1 1 0 0 0 0
0 �1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 �1
0 0 0 0 0 0 1

2
666666666664

3
777777777775

; ð2Þ

while for the forest shown in Fig. 2 it would be

D ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
�1 0 0 1 0 0 0
�1 0 0 0 1 0 0
0 �1 0 0 0 1 0
0 0 0 0 �1 0 1

2
666666666664

3
777777777775

: ð3Þ

Notice that a linear system of equations Dx ¼ b with matrix (3) can
be trivially solved by evaluating lower order vertices first (this is
called forward substitution), which may not be true for arbitrary
vertex orderings (e.g. matrix in (2)). Considering a linear system
of equations Dx ¼ b, the ith row of D can be interpreted as setting
a potential in the vertex v i as the potential of its parent vpi

plus a
delta potential bi. Similarly, for a system DTx ¼ b, the ith row of
DT can be interpreted as setting a flow in the edge ðv i;vpi

Þ as the
flow of immediate lower level incident edges plus a flow injection
bi.

Let ei be the unit vector with all null-elements, but the ith
which is unitary. The solution of Dx ¼ ei can be interpreted as all
sub-tree vertices of vertex v i taking the same potential, i.e. a uni-
tary potential. Considering that the identity matrix can be written
as ½e1e2; . . . ; en�, the inverse of D is also a lower triangular matrix
with only zeros and ones (i.e. DD�1 ¼ ½e1e2; . . . ; en� so that
D�1 ¼ ½D�1e1D�1e2; . . . ;D�1en�). For instance, the inverse of matrix
(3) is

D�1 ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 1 0 1

2
666666666664

3
777777777775

: ð4Þ

The ith column of this matrix indicates member vertices of the
respective vertex v i. Following this analysis, for each element xi

the linear system of equations solution x ¼ D�Tb can be interpreted
as the accumulation of nodal values b into the respective sub-tree
root vertex v i, including bi itself. Analogously, x ¼ D�1b can be inter-
preted as the accumulation of edge values b into the respective end
vertex v i of a path to the respective tree root vertex v j, including bj

itself. For instance, consider the matrix in (3) and its inverse in (4)
(see Fig. 2), and let b ¼ ½1 2 3 4 5 6 7�T. Then,
D�Tb ¼ ½1 78 3 4 12 6 7�T and D�1b ¼ ½1 2 3 5 6 8 13�T.

The worst-case storage for D�1 occurs for a path graph, where
the lower triangular part of D�1 is entirely filled with ones, i.e.
exactly nðnþ 1Þ=2 non-null elements. Fig. 3 shows the matrices
D and D�1 to a path graph with 100 vertices. This implies not only
a storage Oðn2Þ, but also a time Oðn2Þ for ðD�1Þb; b 2 Rn, consider-
ing that D�1 is actually computed instead of solving a linear system
of equations. This has a strong impact onto numerical methods: it

Fig. 1. A forest with root vertices v2; v7 and v5 and parent vector
p ¼ ½3 2 2 2 5 7 7�T.

Fig. 2. A forest with root vertices v1; v2 and v3 and parent vector
p ¼ ½1 2 3 1 1 2 5�T, whose vertices are ordered according to their respective levels.

902 A.C. Lisboa et al. / Electrical Power and Energy Systems 63 (2014) 901–907



Download English Version:

https://daneshyari.com/en/article/6860237

Download Persian Version:

https://daneshyari.com/article/6860237

Daneshyari.com

https://daneshyari.com/en/article/6860237
https://daneshyari.com/article/6860237
https://daneshyari.com

