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a b s t r a c t

Context: The electric parameters of the power networks are usually analysed through deterministic
power flows; however, the variation in load demands and power fluctuation of renewable generators
cannot be considered with the deterministic power flows because it uses specific power values. The
probabilistic power flow methods are better for this purpose since they apply techniques to include
and reflect the uncertainty of input variables on the results obtained.

Objective: This paper extends the Point Estimate Method (PEM) applied to the probabilistic power flow
of an unbalanced power distribution system with dispersed generation and variable power factors. This
method is applied to include uncertainties of loads and power sources such as wind and solar. As PEM
requires independent input random variables, but usually there is spatial correlation between loads or
power sources; therefore, Cholesky decomposition is applied to deal with this situation.

Method: In this paper are combined the scheme 2m+1 of the Point Estimate Method with the Cholesky
decomposition and some approximation methodologies to estimate the cumulative distribution function
of some electrical parameters.

Results: The results obtained are the moments about the mean of the output variables, which are used
in conjunction with some approximation methodologies to obtain an estimation of the Cumulative
Distribution Function for nodes or branch parameters. The proposed methodology is tested on the
three-phase unbalanced IEEE 123-node test system, and results are compared with those obtained from
the benchmark Monte Carlo simulation.

Conclusions: There are comments on some pertinent information about Point Estimate Method perfor-
mance on this kind of power systems.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

One section of the electric power system that can be most in-
volved in the future of renewable installations is that which corre-
sponds to its power distribution. The introduction of renewable
power sources creates new challenges in these systems, including
those posed by the spatially correlation of the sources and the
variability on the power supply, which is caused by the random-

ness of the sources. The voltage and power profiles in the system
change as a function of the power sources, along with variability
in loads. Currently, the power does not travel only from the
substation to the loads, nor do generators with intermittent
sources always deliver the same power.

The electric parameters of the power networks are usually ana-
lyzed through deterministic power flow method (DPF); however,
the variation in load demands and power fluctuation of renewable
generators cannot be considered with the DPF method because it
uses specific power values. The probabilistic power flow (PPF)
methods are better for this purpose since they apply techniques
to include and reflect the uncertainty of input variables on the re-
sults obtained.

The Monte Carlo simulation (MCS) methodology is usually the
reference for probabilistic power flows because it uses nonlinear
power equations and is simple to develop. This methodology, how-
ever, is demanding in terms of time and computational resources
as a result of the many deterministic power flows needed to reach
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Abbreviations: CC, coefficient of correlation; CV, coefficient of variation; CDF,
cumulative distribution function; DPF, deterministic power flow; MCS, Monte Carlo
simulation; PDF, probability density function; PEM, Point Estimate Method; PEM-
CG2, second order Gram–Charlier expansion; PEM-CF1, first order Cornish–Fisher
approximation; PEM-CF2, second order Cornish–Fisher approximation; PEM-ED1,
first order Edgeworth expansion; PEM-ED2, second order Edgeworth expansion;
PEM-N, normal approximation; PPF, probabilistic power flow.
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a convergence. The probabilistic power flow based on MCS is
known as numerical method. Analytical methods—including line-
arization, multi-linearizations, cumulants and quadratic probabi-
listic load flow—are another way of solving PPF problems; these
methods work with the probability density functions (PDF) or
the statistics of input random variables. They require some
assumptions to deal with dependence between input random vari-
ables and the nonlinearity of the power equations. Point Estimate
Method (PEM) is another option and involves working with statis-
tics of random variables, but it does not require the complete
knowledge of the density functions. PEM gives an approximation
of the raw moments of output variables. Moreover than PPF, meth-
ods like fuzzy logic or interval analysis can be used to solve the
power flow problem when uncertainties are presented. These
methods supposed an incomplete knowledge of input random
variables and assume possibilities more than probabilities for
them; thus, the output variables are described by ranges of possi-
ble values. The referred methodologies and their application to the
power flow problem can be found in review papers as [1,2].

Of all methodologies mentioned above, PEM is one of the most
recent to be evaluated in the PPF problem, and it is found to

provide convenient results and performance. PEM is used to
approximate the first moments of the random output variables of
interest with only a few evaluations. This method has been modi-
fied since it was first proposed, and, depending on the selected
scheme, some of its advantages are, among others: Good results
obtained from a small sample of deterministic power flows, the
possibility of using nonlinear power equations, and the ability to
process correlated random variables using some additional meth-
odologies in conjunction with PEM.

Literature review

PEM has been modified since Rosenblueth presented its 2m

method [3]. These modifications have resulted in several methods
like: 2m method from Harr, O(m3) method from Li, and Km or
Km + 1 schemes from Hong [4], all these are described and their
differences compared in [5]. As m is equal to the number of input
random variables, the number of evaluations required to achieve
a solution is then 2m, 2m, O(m3), Km or Km + 1 respectively (with
K = 2, . . .,4). As it is can be observed and especially if m is greater,

Nomenclature

Letters
Cq,h covariance matrix of transformed input random vari-

ables (q) that must be equal to identity matrix
Cx,h covariance matrix of independent input variables (x)
EðZj

l;hÞ statistical moment of order j, for output variable Z
f(x) density probability function
F(x) distribution probability function
G multiplicative factor depending on probability function
h it could be 1, 3, 5 for real power, and 2, 4, 6 for reactive

power of phases A, B, and C respectively
i concentration points for PEM 2m + 1 scheme, i = 1, . . ., 3
j order of moment of an output random variable
k3, k4 cumulants of third and fourth order respectively
k�3; k

�
4 standardized cumulants of third and fourth order

l element of the system (node, line, etc.)
Lh lower triangular matrix of value h
m number of independent input random variables
M03ðxk;hÞ third moment about mean of a input random variable
M04ðxk;hÞ fourth moment about mean of a input random variable
P real power
p0,h totalized weight for all concentration point i = 3 of all

input random variables
pk,h,i weight of concentration point i of input random variable

k value h
Prk nominal power of wind turbine associated to k variable
Q reactive power
qk,h,i transformed input random variable k value h at concen-

tration point i
v it describes correlation (absence/presence) between

phases, and real and reactive power
Vcik cut in speed of wind turbine associated to k variable
Vrk nominal speed of wind turbine associated to k variable
Vcok cut-out speed of wind turbine associated to k variable
Wh vector of independent standard normal samples, one for

each input random variable
xk independent input random variables for k = 1, . . ., m, in-

clude the set of h = 1, . . ., 6 values
xk,h independent input random variable k value h
xk,h,i independent input random variable k value h at concen-

tration point i

Z output random variable, e.g.: voltage, current, etc.
Zh vector of correlated standard normal samples
Zl,h(k, i) parameter obtained from deterministic power flows

when it is used the variable k at concentration point i

Symbols
a quantile of a distribution function
rk,h standard deviation of variable k value h
ed-95 absolute angle error for P95 in degrees
ePi (%) relative real power error at lines in %
ePi-95 (%) relative real power error at lines for P95 in %
eQi (%) relative reactive power error at lines in %
eQi-95 (%) relative reactive power error at lines for P95 in %
ePij (%) relative real power error at nodes in %
ePij-95 (%) relative real power error at nodes for P95 in %
eQij (%) relative reactive power error at nodes in %
eQij-95 (%) relative reactive power error at nodes for P95 in %
eV (%) relative voltage error in %
eV-95 (%) relative voltage error for 95th percentile (P95) in %
c1 skewness coefficient of variable to be approximate
c2 kurtosis coefficient of variable to be approximate
/(x) standard normal density function
U(x) standard normal distribution function
kk,h,3 skewness coefficient of variable k value h
kk,h,4 kurtosis coefficient of variable k value h
kqk,h,3 skewness coefficient of variable qk value h
kqk,h,4 kurtosis coefficient of variable qk value h
lk,h mean of variable k value h
lk set of mean values for variables k = 1, . . ., m. this set

includes the h = 1, . . ., 6 values
lqh vector of mean values of all variable q value h
lxh vector of mean values of all variable x value h
l02(Zl,h) second moment about mean of an output variable
l03(Zl,h) third moment about mean of an output variable
l04(Zl,h) fourth moment about mean of an output variable
qx(i, j) correlation coefficient between variables i and j
x(a) inverse probability function for quantile a
x(a)* inverse standard probability function for quantile a
n(a) inverse standard normal distribution for quantile a
nk,h,i factor involving skewness and kurtosis coefficients for

input variable k value h at concentration point i
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