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a b s t r a c t

Existing commercial battery charging posts for electric vehicles (EV) offer limited controllability and flex-
ibility. These chargers are not designed to allow users to specify important criteria such as desired energy
for next trip and waiting time whilst charging. In addition, the charging regime is not set to take into con-
sideration the impact of charging (e.g. rate of charge) on the battery cycle life and the grid supply.

With increased penetration of EVs and distributed generators (DG), complying with grid regulations
will become more challenging, e.g. network voltage levels may deviate from the statutory limits. More-
over, as the battery is the most expensive part of an EV, consideration should be given to extending bat-
tery life and reduce the effective EV cost. Therefore, there is a need to develop a smart EV charge
controller that can meet users’ requirements, extend battery cycle life and have minimum impact on
the grid supply.

In this paper, a smart controller is proposed which determines the optimal charging current based on
grid voltage, battery state of health and user’s trip requirements. Models of a typical UK power distribu-
tion network and an EV battery (that allows simulation of battery aging process) are developed to inves-
tigate the performance of the ‘‘smart’’ charging system. Simulation and experimental results are
presented to demonstrate the effectiveness of the proposed controller.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Renewable energy and electric vehicles (EV) are intended to
replace conventional electricity generation and transport systems,
which is expected to result in a significant reduction in greenhouse
gas emissions [1,2]. However, the intermittent nature of renew-
ables combined with uncontrolled EV charging can have significant
adverse impacts on power networks, e.g. overloading of transform-
ers and voltages exceeding the statutory limits [3–5].

Deilami and Masoum [6,7] suggested a centralized EV charge
aggregator that employs ‘‘objective functions’’ to solve voltage
sag problems. The aggregator collects information from every
charging point (such as EV arrival, departure, charging priority
and charging time) and runs the network load flow every 5 min,
to generate effective commands to the chargers, in order to avoid
exceeding the voltage statutory limits. Practically, this centralized
control method has difficulties in responding to frequent changes

in grid voltages, especially with high penetration levels of embed-
ded intermittent renewable generation. In addition, it is difficult to
identify an individual EV’s charging status and its user’s needs. As a
result, there is a need for a decentralized control strategy to meet
the user’s requirements without compromising the grid quality of
supply.

Singh et al. [8] developed a decentralized controller based on
fuzzy systems to realise a real-time EV charging/discharging
(V2G) control, where 50% of the EV battery pack energy was
reserved for EV use and the rest was used to support ancillary ser-
vices for the grid (e.g. voltage control). The suggested control strat-
egy aims to support the grid, but does not consider the user’s
requirements or the battery state of health (SOH).

Battery capacity degradation affects the overall EV cost and
range. Therefore, it is important to consider this aspect during
charging. Battery capacity loss includes cycle loss and calendar loss
[9]. Spotnitz [10] indicated that cycling causes capacity loss at a
greater rate than from calendar losses alone. Marra et al. [11]
and Lunz et al. [12] concluded that the four main factors that affect
the battery cycle life are temperature, state of charge (SOC),
charging current (normally presented as ‘‘C-rate’’) and depth of
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discharge (DOD). Battery capacity fading accelerates when it is
cycled at high temperature, high SOC, high C-rate and large DOD.

A comparison between the functions of conventional EV charg-
ing controllers is presented in Table 1. It can be seen these control-
lers have limited functionality and do not simultaneously provide a
smart control to meet EV user’s requirements, prolong EV battery
life and support active network operation.

This paper proposes a new EV charging control ‘‘concept’’ and a
decentralized real-time smart controller for 3-phase single EV
charging that meets all the functions listed in Table 1. The pro-
posed controller may be designed to be part of an on-board or
off-board EV charger. The smart controller interacts with the EV,
user and network, as shown in Fig. 1. The controller determines a
suitable current to charge the EV battery based on information col-
lected from the smart-meter, battery management system (BMS)
and user input. As the input data to the smart controller is largely
non-linear, Fuzzy Logic (FL) rules, which use linguistic representa-
tion to express ambiguous information rather than complex math-
ematical equations [13], are employed in the proposed charging
system.

The paper is organized as follows. Section ‘The proposed control-
ler’ presents the structure of the proposed controller. In Sec-
tion ‘Modelling of the distribution network’, a typical model of a
UK 33/0.4 kV distribution network is developed. Section ‘Modelling
of Lithium-ion Battery’ presents a model for a typical EV battery with
capacity fading prediction. In Section ‘Design of the Fuzzy Logic Con-
troller’, the fuzzy system used in the proposed controller is
described. A range of smart charging scenarios are simulated and
discussed in Section ‘Results and Discussion’. Section ‘Experimental
work’ presents details of the experimental laboratory model of the
smart charger that was developed to demonstrate the effectiveness
of the smart charging. Conclusions are given in Section ‘Conclusions’.

The proposed controller

The proposed decentralized controller is intended for a single
EV charger (on-board or off-board), where the control strategy is
optimized based on the battery status of the specific EV to be
charged. A block diagram of the controller is depicted in Fig. 2.
The smart controller receives information about the battery state
from the BMS (A), user requirements (B) and grid conditions (C).
The three signals to the fuzzy logic controller are battery SOH
(S1), user defined charging current (S2) and grid node voltage
(S3). The output of the controller is the maximum charging current
‘‘C-rate’’, which can be used to set the charging current (in
Amperes) based on the battery capacity. The charging current
and battery terminal voltage determine the loading on the grid.

Battery Information

For the battery pack of a specific EV to be charged, the informa-
tion required by the smart controller, such as cycle number and
SOC remaining (initial SOC) is obtained from the on-board battery
management system (BMS). The battery SOH is defined as a
‘measure’ which reflects the general condition of a battery and

its ability to deliver usable capacity in comparison with a fresh bat-
tery [14]. In this paper, the battery SOH is described as the differ-
ence between the usable capacity and the end of life capacity
(usually 80% of the rated capacity [11]) as a percentage of the rated
(fresh) capacity%. The proposed controller calculates the SOH
based on information received from the BMS with respect to the
total number of charge/discharge cycles. Assuming the usable
capacity of a fresh battery is 100%, the SOH can be defined as:

SOH ¼ 100%� 80%� f ðcyclesÞ ð1Þ

where f is a function of number of charging cycles, and it is obvious
that 0% 6 SOH 6 20%.

The tests reported by [15] show that the battery usable capacity
decreases almost linearly as the charging cycle number increases
(assuming constant temperature). The SOH can thus be expressed
as:

SOH ¼ 20%� ðRa� cycle numberÞ ð2Þ

where the degradation coefficient a changes as the battery cycling
conditions vary and is determined from experimental data of bat-
tery cycling. Therefore,

aparticular condition ¼
20%

cycle numberparticular condition
ð3Þ

In (1)–(3), it is assumed that the BMS can assess the cumulative loss
of capacity under different cycling conditions. It is usual to normal-
ise the loss under different conditions into a single equivalent value
rated at ½ C and 70% DOD. Therefore, the BMS may be designed to
show the cycle life at different cycling conditions according to (3).

The SOC is defined as the percentage of the maximum possible
charge that is present in a battery:

SOC ¼
R

idt
Cusable

; 0 6 SOC 6 1 ð4Þ

where Cusable is the battery usable capacity in ampere hours.

EV user requirements

The EV user requirements are defined in terms of the next jour-
ney length and ‘‘wait-able’’ charging period. As mentioned earlier,
battery capacity fading accelerates with increasing SOC and DOD
[11]. Therefore, charging only the necessary amount of energy
required for the next journey can help protect the battery and
extend its life. The energy required for the next journey is trans-
ferred into the relative SOCtarget and may be represented as:

DSOC ¼ SOCtarget � SOCremain 0 6 DSOC 6 1 ð5Þ

where SOCremain represents the energy left in the battery (before
charging starts). This information is provided by the BMS.

Table 1
Comparison between EV charging controllers.

Controller Objectives

User’s
requirements

Network support Battery life
extension

Standard EV charger Yes No No
Centralized

aggregator [6,7]
Yes Partially (not in

real-time)
No

Decentralized
controller [8]

No Yes No

Fig. 1. The smart controller interface links.
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