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a b s t r a c t

The decentralization of electrical power production is conducive to a more effective and harmonious use
of energy resources. For this reason, photovoltaic grid-connected plants (PVGCPs) as well as other renew-
able energy sources have come into the spotlight in recent years since they improve the supply of elec-
trical power to the grid. The optimization of PVGCP design has been previously addressed in terms of
electrical losses with successful results. However, PVGCP performance can be further enhanced if other
characteristics, such as power capacity, are taken into consideration. This paper focuses on the optimiza-
tion of the design of photovoltaic plants with solar tracking. The research described had the following two
objectives: (i) the maximization of power capacity; (ii) the minimization of electrical losses. This problem
was solved with multi-objective evolutionary algorithms, which have proved to be powerful optimization
techniques that are useful for a wide range of objectives. This paper focuses on the NSGA-II and SPEA2,
two well-known multi-objective algorithms, and describes how they were used to optimize PVGCPs. The
resulting sets of solutions provide the flexibility and adaptability needed to build a PVGCP. These algo-
rithms were thus found to be an effective tool for enhancing PVGCP performance.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The progressive depletion of fossil fuel reserves as well as the
constant rise in CO2 emissions and an ever increasing energy
demand has led to the growing use and exploitation of renewable
energy sources. One of these sources is solar energy obtained from
photovoltaic (PV) systems. They are currently being subsidized by
many national governments throughout the world. Not surpris-
ingly, the decentralization of electricity production has also
become an important goal [1]. This is due to the fact that when
electricity is locally generated near urban areas, this reduces elec-
tricity losses [2]. Photovoltaic grid-connected systems (PVGCSs)
are often used to supply the local grid with the total energy pro-
duced by PV modules.

Before the installation of a PVGCS, various parameters must be
considered, such as the irradiance, temperature, and wind at the
proposed location. This is necessary in order to evaluate the viabil-
ity and profitability of the PVGCS. Nevertheless, even after these
steps are completed, the design of the distribution and sizing of a

PV plant with solar trackers is far from a simple task [3]. There
are a large number of variables that must be taken into account.
These variables determine the efficiency and effectiveness of the
PV plant. Depending on the potential location of the PV plant, it
may be better to opt for a lower number of large solar trackers
or on the contrary, a higher number of small ones. Whatever the
solution, it will affect the distance between trackers, the length
of the electrical conductors, and the choice of inverters. Thus, the
design of PV systems can be viewed as a continuous optimization
problem, which can be solved by evolutionary algorithms (EAs)
[4–6].

EAs have been instrumental in the optimization of PVGCPs [7,8].
However, these single-objective techniques can only optimize one
of the targets of the system. In [7], genetic algorithms [9] and dif-
ferential evolution [10,11] were applied to find the optimal distri-
bution and sizing of photovoltaic modules, solar trackers, and
inverters. The authors aimed to minimize electrical losses. In most
cases, the use of a given field is not optimal because the evolution-
ary algorithm only focuses on reducing power losses, regardless of
the power capacity being installed at the site.

A wide range of optimization problems have more than one
target, which means that they can only be addressed with
multi-objective evolutionary algorithms (MOEAs) [12,13]. Such

http://dx.doi.org/10.1016/j.ijepes.2014.03.064
0142-0615/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +34 958 249435; fax: +34 958 246138.
E-mail addresses: dglorente@ugr.es (D. Gómez-Lorente), triguero@decsai.ugr.es

(I. Triguero), cgilm@ual.es (C. Gil), ovidio@ugr.es (O. Rabaza).

Electrical Power and Energy Systems 61 (2014) 371–379

Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2014.03.064&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2014.03.064
mailto:dglorente@ugr.es
mailto:triguero@decsai.ugr.es
mailto:cgilm@ual.es
mailto:ovidio@ugr.es
http://dx.doi.org/10.1016/j.ijepes.2014.03.064
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


algorithms have been effectively used to design both stand-alone
PV systems and PVGCSs. In [14], the MOEA known as NSGA-II
[15] was used to find the optimal design of hybrid PV-wind energy
systems by formulating it as a multi-objective optimization prob-
lem. In [16], the MOEA used was based on particle swarm optimi-
zation [17] to optimize the environmental benefit and total net
profit of the systems useful life. In [18], by means of evolutionary
multi-objective programming, objectives were formulated to max-
imize the expected technical and economic performance indicators
for system design.

This paper proposes the use of MOEAs, which are able to main-
tain a balance between two or more goals and can perform well as
powerful optimization techniques with several objectives. More
specifically, our research focuses on two well-known multi-objec-
tive algorithms, called the NSGA-II and the SPEA2, and analyzes
their capacity to optimize PVGCPs. The resulting solutions provide
the flexibility and adaptability needed to build a PVGCP. These
algorithms thus showed themselves to be an effective tool for
enhancing the performance of PVGCPs.

To analyze the effectiveness of these techniques in the design of
PVGCPs, several fields were studied as well as the response of each
of the MOEAs applied to their optimization. The results are repre-
sented by curves or fronts on Cartesian axes showing the numeri-
cal values of the two objectives (installed power capacity and
electrical losses). These sets of designs provided more flexible solu-
tions that were in consonance with our needs and invaluable in
choosing the optimal solution for our field.

The rest of the paper is organized as follows: ‘Background’
describes the background of PV systems and the MOEAs used;
‘MOEAS for optimizing the design of PVGCPs with trackers’
explains and justifies the use of MOEAs for optimizing PV plant
design; ‘Experimental framework and results’ presents the experi-
mental framework used in this research, discusses the results
obtained, and provides an analysis of the convergence of each EA
population. Finally, in ‘Conclusions’, we summarize the conclusions
that can be derived from this study.

Background

‘PV plants with trackers’ gives an overview of the main features
of PV plants with solar trackers and the MOEAs used. ‘Strength
pareto evolutionary algorithm’ and Non-dominated sorting genetic
algorithm’ describe the main characteristics of SPEA2 and NSGA-II
algorithms, respectively.

PV plants with trackers

The main components of a PV plant with solar trackers are the
following: (i) the field where the PV plant will be installed; (ii) the
trackers that will be distributed in this field; (iii) the PV modules
on the monitoring structures; (iv) the inverters that convert direct
current into alternating current; and (v) the electrical conductors
that convey electrical energy from the PV modules to the inverters.
The electrical losses in the transmission of electrical energy
through the electrical conductors can be calculated with the
expression in (1):

P ¼ 2 � R � I2 ð1Þ

where I is the intensity of current passing through a conductor, and
R is the electrical resistance, which depends on the section s, length
L and resistivity q of the conductor. In the case of copper conduc-
tors, this resistivity can take the value q ¼ 0:017241 X�m2

m (X ohms
and m meters [19]). The variables are related as shown in (2):

R ¼ q � L
s

ð2Þ

The section of the conductor is determined by the intensity of
the electrical current that it is able to carry and the allowable volt-
age drop for that section. In our case, the main condition defining
the section of the conductor was the voltage drop. This is because
the current through the conductors was much lower than the inten-
sities that they were able to carry. Therefore, the conduction section
was defined by the permissible voltage drop as shown in (3).

DV ¼ 2 � L P
l � s � V ð3Þ

where P is the electrical power flowing through the conductor, l the
electrical conductivity of the copper conductor that depends on
temperature but can take a standard value of l ¼ 58:0 m

X�m2 and V
the line voltage [19].

The conductor length is determined by the distance from the
tracking structure to the inverter. In a rectangular field, inverters
are generally located at the geometric center of the field. Thus,
once we know the distances from each of the tracking structures
to the geometric center of the field and the electrical current flow-
ing from each tracker to the inverter, it is possible to calculate the
electrical (Joule) losses produced. Obviously, the most interesting
configurations are those in which the current flow through the
conductors is as low as possible and the voltage at which the cur-
rent flows is as high as the inverter allows. The intensity and volt-
age are not only defined by the electrical parameters of the PV
modules. They also depend on the various series–parallel associa-
tions within the tracking structures. Physical parameters of the
PV modules, such as height and width, define the size of the track-
ing structures, defining the separation between them. It ensures
that none casts shadows on surrounding structures. This evidently
limits the number of trackers that can be installed in the field.

Moreover, the maximum installed power is calculated by add-
ing the nominal power of each of the trackers installed on the
ground. For this reason, there will be solutions in which the result
of the first objective is very good, even though the number of solar
trackers installed on the field is very low compared to the trackers
that would fit on it.

Multi-objective algorithms

There are many types of multi-objective optimization algo-
rithms [20]. This research used the SPEA2, and NSGA-II, two of
the most widely used MOEAs in renewable energy optimization
[21], to optimize the efficiency of a PVGCP. Fig. 1 shows the basic
structure of an MOEA. The following subsections briefly describe
these two approaches.

Objectives
Each chromosome is associated with a two-dimensional objec-

tive vector. Its elements express the degree to which the following
two objectives are fulfilled:

Fig. 1. MOEA basic structure.
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