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a b s t r a c t

Unit commitment (UC) is a NP-hard nonlinear mixed-integer optimization problem. This paper proposes
ELRPSO, an algorithm to solve the UC problem using Lagrangian relaxation (LR) and particle swarm opti-
mization (PSO). ELRPSO employs a state-of-the-art powerful PSO variant called comprehensive learning
PSO to find a feasible near-optimal UC schedule. Each particle represents Lagrangian multipliers. The PSO
uses a low level LR procedure, a reserve repairing heuristic, a unit decommitment heuristic, and an eco-
nomic dispatch heuristic to obtain a feasible UC schedule for each particle. The reserve repairing heuristic
addresses the spinning reserve and minimum up/down time constraints simultaneously. Moreover, the
reserve repairing and unit decommitment heuristics consider committing/decommitting a unit for a con-
secutive period of hours at a time in order to reduce the total startup cost. Each particle is initialized using
the Lagrangian multipliers obtained from a LR that iteratively updates the multipliers through an adap-
tive subgradient heuristic, because the multipliers obtained from the LR tend to be close to the optimal
multipliers and have a high potential to lead to a feasible near-optimal UC schedule. Numerical results on
test thermal power systems of 10, 20, 40, 60, 80, and 100 units demonstrate that ELRPSO is able to find a
low-cost UC schedule in a short time and is robust in performance.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Unit commitment (UC) [1] refers to scheduling on/off status and
power outputs of a power system’s generating units over a short-
term planning horizon (e.g. 1 day), with the objective of minimiz-
ing total power generation cost while simultaneously satisfying
coupling constraints of power balance and spinning reserve, as
well as physical and operational constraints of each individual unit.
UC is critical to the daily planning of modern power systems, as an
improved UC schedule may significantly save the power genera-
tion cost, e.g. by millions of dollars per year [2].

UC has commonly been formulated as a nonlinear mixed-
integer optimization problem, which is NP-hard [3]. Exhaustive
enumeration is certainly able to find an exact optimal UC schedule,
but it is inapplicable to a realistic power system (which usually
comprises tens to hundreds of units) due to its prohibitive expo-
nential computation time requirement. Accordingly, existing
research endeavors have mainly focused on deriving a near-optimal
UC schedule using various optimization algorithms. Extensive
literature surveys on the UC problem can be found in [4,5].

Lagrangian relaxation (LR) [2,6–15] and particle swarm optimi-
zation (PSO) [10,12,16–20] are two popular optimization algo-
rithms that have been applied to solve the UC problem. LR
relaxes the complicating constraints of power balance and spin-
ning reserve with the introduction of Lagrangian multipliers,
resulting in a dual problem that is much easier to solve. LR itera-
tively updates the multipliers and solves the associated dual prob-
lem. PSO is a modern meta-heuristic optimization algorithm
introduced in 1995 [21,22]. PSO simulates the movements of
organisms in a bird flock or fish school, as it is inspired by the
natural process of group communication to share individual
knowledge. PSO is population based and finds the optimum using
a swarm of particles, with each particle representing a candidate
solution, thus PSO is strong in parallel global search. Compared
with evolutionary computation based meta-heuristics such as evo-
lutionary programming (EP) [23] and genetic algorithm (GA)
[9,24–27], PSO basically does not use any evolution operator (e.g.
crossover, mutation, or selection), thus PSO is simpler in concept
and easier to implement. When applying PSO to UC, there are three
particle representation schemes: one is LR based PSO using
Lagrangian multipliers to encode a particle [10,12], as a UC sche-
dule can be obtained through solving a Lagrangian dual problem;
the second is binary PSO using an on/off status schedule [17–20],
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as the power outputs can be obtained via economic dispatch (ED)
[1]; and the last is binary relaxation based PSO using real numbers
in [0,1] to approximate an on/off status schedule [16]. For LR [2,6–
15] (including LRGA [9] and the LR based PSOs [10,12]), it is usually
time consuming to find a feasible near-optimal UC schedule,
because small changes in the Lagrangian multipliers can cause
over-correction of the on/off status of the units, leading to violation
of the relaxed spinning reserve constraints. In the binary and bin-
ary relaxation based PSOs [16–20], the particles initialized and
updated are also often infeasible with respect to the spinning
reserve constraints. As a consequence, many literature works
[2,8,11,13,14,17–20] proposed to make a UC schedule reserve-
feasible through successively committing an uncommitted unit and/
or further refine a reserve-feasible schedule through successively
decommitting an over-committed unit. The unit for commit-
ment/decommitment is usually selected according to its full load
average cost (FLAC).

This paper proposes ELRPSO, an enhanced method that com-
bines the strengths of LR and PSO to solve UC. ELRPSO employs
a state-of-the-art powerful PSO variant called comprehensive
learning PSO (CLPSO) [28] to find a feasible near-optimal UC
schedule. In PSO, all particles ‘‘fly’’ in the search space. PSO relies
on iterative learning to find the optimum. In each iteration (or
generation), a particle adjusts its position based on its personal
search experience and also the experiences of its neighborhood
particles. With respect to many existing PSO variants such as glo-
bal PSO [29], local PSO [30], and fully informed PSO [31], once a
neighborhood experiences related exemplar position has been
determined, it is used to update a particle’s position on all
dimensions. Recognizing the fact that one exemplar does not
always offer a good guide on every dimension, CLPSO encourages
a particle to learn from different exemplars on different dimen-
sions, thus CLPSO performs excellent in preserving the particle’s
diversity and locating the global optimum region. In ELRPSO, a
priority list based on ascending order of FLACs of the units is first
set up. Each particle in the employed CLPSO represents Lagrang-
ian multipliers. In each generation, the CLPSO uses a low level LR
procedure to find an on/off status schedule for each particle
according to the Lagrangian multipliers that the particle repre-
sents, a reserve repairing heuristic to make the schedule
reserve-feasible, a unit decommitment heuristic to handle over-
commitment(s) in the schedule, and an ED heuristic to determine
the power outputs of the units so as not to violate the power bal-
ance constraints. Both the reserve repairing and unit decommit-
ment heuristics rely on the FLACs sorted in the priority list to
successively select a unit for commitment/decommitment. Each
particle in the CLPSO is initialized using the Lagrangian multipli-
ers obtained from a separate run of a LR. Given random initial
Lagrangian multipliers, the LR uses an adaptive subgradient heu-
ristic to iteratively update the multipliers. As the Lagrangian
function formed by the relaxation of the complicating constraints
is concave and non-differentiable, the subgradient heuristic can
make the Lagrangian multipliers move closer to the optimal mul-
tipliers in each iteration through the use of appropriate step sizes
in the direction of subgradients [32]. After an enough number of
iterations, the Lagrangian multipliers obtained are expected to be
near the optimal multipliers, thus the on/off status schedule
found from the low level LR procedure in the CLPSO using the ini-
tial particle obtained from the LR is usually similar to the dual
optimal schedule, only with a small number of different on/off
commitments in the two schedules. Our observation from the
numerical results as presented in section ‘Simulation and Numer-
ical Results’ is that such an on/off status schedule attained from
the low level LR procedure has a high potential to lead to a fea-
sible near-optimal schedule through the use of the reserve

repairing and unit decommitment heuristics in the CLPSO,
whereas in contrast, an on/off status schedule that is much differ-
ent from the dual optimum often leads to a feasible sub-optimal
schedule using the heuristics.

ELRPSO is able to find a feasible near-optimal UC schedule in a
short time for three reasons: (1) the LR uses a subgradient heuristic
that is adaptive in determining the step sizes for the subgradients,
thus the Lagrangian multipliers can quickly move sufficiently close
to the optimal multipliers; (2) the CLPSO obtains a feasible UC
schedule from each particle in each generation, thus the CLPSO
searches exclusively in the feasible space; and (3) the CLPSO
searches in a space near the optimal Lagrangian multipliers, and
small changes in the multipliers can cause over-correction of the
on/off status of the units, thus a feasible near-optimal UC schedule
is highly likely to be found from a variety of on/off status schedules
(similar to the dual optimum) explored in a small number of func-
tion evaluations.

ELRPSO consumes considerably less memory storage than the
binary and binary relaxation based PSOs proposed in [16–20].
The particle representation in ELRPSO is independent of system
size. Besides, without explicit parallel programming, the particles
are actually handled one by one in each generation on a computer,
thus storage for storing the on/off status and power outputs can be
shared among all the particles. ELRPSO differs from the LR based
PSOs proposed in [10,12] in that ELRPSO uses LR to help initialize
the particles in a space near the optimal Lagrangian multipliers
and a heuristic to make the schedules reserve-feasible.

The reserve repairing and unit decommitment heuristics pro-
posed in this paper are novel. When committing an uncommitted
unit, the reserve repairing heuristic also modifies some relevant
on/off commitments so as not to violate the minimum up/down
time constraints; or in other words, it addresses the spinning
reserve and minimum up/down time constraints simultaneously,
whereas existing literature works either ignore the latter con-
straints [2,8] or handle the two types of constraints separately
(and is hence less efficient) [17–20]. Different from [2,8,11,13,14,
17–20] that commit/decommit a unit for 1 h at a time, the reserve
repairing and unit decommitment heuristics consider committing/
decommitting a unit for a consecutive period of hours at a time in
order to reduce the frequency of starting the unit and thus reduce
the total startup cost.

The rest of this paper is organized as follows. In section
‘Problem Formulation and Related Works’, a mathematical
formulation of the UC problem is given and literature works
related to UC are discussed. Section ‘Methodologies’ reviews LR
and CLPSO. Section ‘Algorithm Framework of ELRPSO’ states the
general framework of ELRPSO. Details of the LR and CLPSO
implemented in ELRPSO are elaborated in sections ‘Implementa-
tion of Lagrangian Relaxation in ELRPSO’ and ‘Implementation of
Comprehensive Learning Particle Swarm Optimization in ELRPSO’
respectively. In section ‘Simulation and Numerical Results’, numer-
ical results are presented. Section ‘Conclusions’ concludes the
paper.

Problem formulation and related works

Problem formulation

Before putting the mathematical formulation of the UC problem
into perspective, decision variables and model parameters are
defined as follows.

Decision variables:

Pi,t Power output of unit i at hour t, in MW
Ui,t On/off status of unit i at hour t (on = 1, off = 0)
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