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a b s t r a c t

In this contribution a dynamic thermal analysis of an overhead transmission line and a buried power
cable is presented. The temperature is calculated as a function of time using a realistic power input
obtained from field data measurements. For both the temperature and the power a harmonic analysis
is performed. The phase shift between the Fourier components corresponding to a one day period turns
out to be a good indication of the temperature delay time with respect to the power peaks. In order to
validate and assess the proposed method a lab experiment has been conducted.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of temperature increase and its prediction is an
interesting one for the electricity companies. It is one of the crucial
parameters that have direct influence to the power transfer
capability. Many papers have been published concerning thermal
problems of overhead [1–8] and buried [9–15] power transmission
systems. Assuming constant dissipated power for the transmission
system, the temperature rises until it attains a constant value. In
this case, the thermal behavior of the system can be fully described
by its thermal resistance Rth = T/P, where T is the temperature rise
above ambient and P the power (Joule losses) per unit length.
However, the power transmitted along the transmission system,
and hence the Joule losses, are fluctuating strongly during a single
day. So, a dynamic analysis of the thermal behavior is needed. The
transmitted power can be considered approximately as a periodic
signal with a period of one day. Consequently, a steady state
thermal analysis based on the evaluation of a thermal resistance
will only give the average temperature. The fluctuating compo-
nents of the power losses give rise to time dependent temperatures

as well. Due to the large thermal time constants, the phase shifts
between the peak power and the peak temperature can be quite
substantial. Hence, for a thermal analysis the thermal impedance,
Zth, has to be evaluated in order to include dynamic thermal effects.
Two high voltage (HV) transmission systems will be compared in
the present work: an ACSR (Aluminum Conductor Steel-Rein-
forced) overhead transmission line and a circuit of two 3-phase
underground cables. The problem is treated analytically in the case
of the ACSR structure and numerically in the case of the under-
ground structure.

Well known, in electrical engineering, is the so called phasor
notation (jx) also denoted by AC. Recently, this approach has been
extended to thermal problems in electronics and microelectronics
[16–21]. The same method is used in this contribution. The final re-
sult for all cases is then a thermal impedance, which is represented
in a so called Nyquist plot (imaginary part versus the real part
using x as a parameter). The data for thermal impedance are sub-
sequently used in a dynamic thermal analysis scheme which al-
lows the prediction of temperature fluctuations (value and delay)
due to load variations.

Dynamic analyses are normally carried out by solving the re-
lated differential equations in order to obtain the temperature as
a function of time. In this contribution a harmonic analysis is pre-
sented. The Joule losses and the temperatures are represented by
Fourier series. It is pointed out that the day night period turns
out to be the most important one.
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2. Complex thermal impedance of an overhead transmission
line

First of all we consider an ACSR overhead transmission line with
a cross sectional view as shown in Fig. 1. Actually, the structure is a
multicore one, but for simplicity reasons we consider it to be
homogeneous. The structure consists of a central core made of
steel in order to guarantee mechanical strength. The core is sur-
rounded by a cylinder made from aluminum and acting as the elec-
tric conduction current medium. The parameters of the ACSR
overhead transmission line are listed in Table 1 where k denotes
the thermal conductivity, q the density, cp the specific heat per unit
weight, cv = qcp the specific heat per unit volume and r the electric
conductivity.

Next a simple thermal model for the overhead line will be pre-
sented. High voltage overhead lines are placed at a sufficiently high
altitude and are not electrically insulated. Being made from metal,
one can assume that the line materials are all good thermal con-
ductors so that a uniform temperature throughout the cross sec-
tion can be assumed. The only way of heat transfer to the
ambient is convection and radiation from the outer surface. Taking
a global heat transfer coefficient h into account one gets the follow-
ing thermal resistance:

Rth ¼
1

h2pr2L
ð1Þ

where r2 is the radius of the line and L its length. Without loss of
generality we can assume L = 1 m for our purposes.

The thermal capacity is easy to evaluate as the specific heat per
unit volume cv times the volume of the line:

Cth ¼ cvpr2
2L ð2Þ

Although the overhead line is composed of steel and aluminum,
an average value of the specific heat of both metals has to be used
here. With the knowledge of Rth and Cth it is quite straightforward
to set up the equivalent thermal network shown in Fig. 2. P is the
dissipated power or the Joule losses in a piece of line of length L. T
denotes the line temperature rise above ambient. The ambient air
temperature is taken as the zero reference value.

Using elementary electric network analysis, the thermal imped-
ance Zth of the line is given by:

Zth ¼
Rth

1þ jxRthCth
¼ Rth

1þ jxsth
ð3Þ

where x = 2pf is the angular frequency and sth = RthCth the thermal
time constant also found to be:

sth ¼ RthCth ¼
1

h2pr2L
cvpr2

2L ¼ cvr2

2h
ð4Þ

The following set of input data has been used: h = 10 W/m2 K,
cv = 2619 kJ/m3 K, r2 = 12.489 mm and L = 1 m in order to make
the plot of Zth shown in Fig. 3. The value cv = 2619 kJ/m3 K is a
weighted average of the cv values given in Table 1. It can be easily
proved that the Nyquist plot of Zth (i.e. the imaginary part of Zth vs.
the real part of Zth using x as a parameter) is exactly a semicircle.
Obviously, at zero frequency one gets the steady state condition
Zth(0) = Rth, the numerical value being Rth = 1.275 K/W. For the
thermal capacity one gets Cth = 1281 J/K so that the time constant
turns out to be sth = 1636 s or about 27 min.

In order to verify the assumption that the cross section of a line
may be treated as isothermal due to the high thermal conductivi-
ties of the metals, the same line was also calculated taking the fi-
nite thermal conductivity k of the metals into account.
Considering that it is consisting of homogeneous parts, the heat
equations for the line structure can be written using phasor repre-
sentation as:

k1r2T1ðrÞ � jxcv1T1ðrÞ ¼ 0 0 < r < r1 ð5Þ

k2r2T2ðrÞ � jxcv2T2ðrÞ ¼ �pðrÞ r1 < r < r2 ð6Þ

where k is the thermal conductivity (W/m K), cv the specific heat
per unit volume (J/m3 K), p(r) the power density (W/m3) and T(r)
the temperature (K). Since the variation of the power density along
the radius r is small, almost negligible, it is considered constant. The
general solution of Eqs. (5) and (6) are [22]:

T1ðrÞ ¼ AI0ðb1rÞ ð7Þ

in the steel core whereas in the Al part one has:

T2ðrÞ
p

jxcv2
þ BI0ðb2rÞ þ CK0ðb2rÞ ð8Þ

in which I0 and K0 are the zeroth order modified Bessel functions of
the first and second kind, respectively, and

bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jxCvi

ki

s
ð9Þ

The temperature T at a given point can be calculated from Eqs. (7)
and (8). If the mean value of the total Joule losses is P Watts, the
thermal impedance Zth is now defined by:

Table 1
Physical parameters of the overhead transmission line.

Material Radius (m) k (W/m K) q (Kg/m3) cp (J/kg K) cv (kJ/m3 K) r (S/m)

Steel r1 = 0.004549 44.1 7850 475 3728 4.13 � 106

Al r2 = 0.012489 237 2707 905 2449 35.3 � 106

Fig. 2. Simplified thermal model of the overhead transmission line.

Fig. 1. Cross sectional view of an overhead transmission line.
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