
Short Communication

An affine arithmetic-based algorithm for radial distribution system
power flow with uncertainties

Wei Gu a,⇑, Lizi Luo a, Tao Ding b, Xiaoli Meng c, Wanxing Sheng c

a School of Electrical Engineering, Southeast University, Nanjing 210096, China
b Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
c China Electric Power Research Institute, Beijing 100192, China

a r t i c l e i n f o

Article history:
Received 15 June 2013
Received in revised form 30 December 2013
Accepted 16 January 2014

Keywords:
Affine arithmetic
Interval arithmetic
Radial distribution system power flow
Uncertainties

a b s t r a c t

This letter presents an algorithm for radial distribution system power flow in the presence of uncertain-
ties. To reduce the overestimation of bounds yielded by correlation of variables in interval arithmetic (IA),
affine arithmetic (AA) is applied in this study to carry out tests of distribution system power flow.
Compared with the algorithm based on IA, the proposed algorithm narrows the gap between the upper
and lower bounds of the power flow solution. IEEE 33-bus and 69-bus test systems are used to
demonstrate the effectiveness of the proposed algorithm.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With an increasing number of renewable power generation
systems connected to distribution systems, power injections are
increasingly difficult to model, which makes it difficult for
traditional deterministic methods to calculate the power flow. To
deal with the uncertainties in power systems, many modeling
approaches have been proposed in Refs. [1–5]. Moreover, popular
power flow algorithms, such as Newton-Raphson and Fast
Decoupled algorithms, generally fail to converge when analyzing
the distribution system for its radial structure and high R/X ratio
[6]. Therefore, the backward/forward sweep algorithm is used to
solve this problem. In Ref. [7], an IA-based backward/forward
sweep algorithm is developed to calculate the power flow of radial
distribution systems, which uses ranges restricted by upper and
lower bounds to express the uncertainties.

However, the ranges estimated by IA tend to be too large,
especially in complicated expressions or long iterative computa-
tions, because they ignore the correlation of different variables
[8]. An AA-based algorithm is proposed to reduce this overestima-
tion of bounds. This algorithm uses the affine form instead of the
interval form to describe the uncertainties of power injections,
thus accounting for correlations between different variables.

2. Affine arithmetic-based algorithm for radial distribution
system power flow

2.1. Concepts of affine arithmetic

In affine arithmetic, a quantity x is represented by an expression
of the form

x̂ ¼ x0 þ x1e1 þ � � � þ xnen ð1Þ

which is an affine expression of noise symbols ei with real coeffi-
cients xi. Each noise symbol ei is a symbolic real variable whose va-
lue is unknown except that it is restricted to the interval [�1, +1]
and is independent from other noise symbols. The coefficient x0 is
called the central value of the affine form of x̂. The coefficients x1,
. . ., xn are the partial deviations associated with the noise symbols
e1, . . ., en in x̂. The number n of noise symbols depends on the affine
form. Different affine forms use a different number of noise
symbols, some of which may be shared with other affine forms.

Affine forms provide interval bounds for the corresponding
quantities: If a quantity x is represented with the affine form x̂ as
above, then x 2 [x0 � rx, x0 + rx]. Here rx = |x1| + . . . + |xn| is called
the total deviation of x̂ [9].

2.2. Calculation rules of affine arithmetic applied in complex field

Two types of uncertainty sources exist in the power injections:
active and reactive power. Because reactive power is represented
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by an imaginary number, complex affine forms are used for the
analysis of power flow with these uncertainties.

Consider two complex quantities x and y represented by the
complex affine forms

x̂ ¼ x0 þ x1e1 þ � � � þ x2ne2n

ŷ ¼ y0 þ y1e1 þ � � � þ y2ne2n
ð2Þ

where x0 and y0 are complex numbers and represent the central va-
lue of each complex affine form. When i is odd, xi and yi are real
coefficients that represent the uncertainties derived from the active
power injections. When i is even, xi and yi are imaginary coefficients
that represent the uncertainties derived from the reactive power
injections.

Based on the calculation rules of affine arithmetic applied in
real number field described in Ref. [9], addition, subtraction, mul-
tiplication and division of these two complex affine forms can be
derived as follows:

x̂þ ŷ ¼ ðx0 þ y0Þ þ ðx1 þ y1Þe1 þ � � � þ ðx2n þ y2nÞe2n ð3Þ

x̂� ŷ ¼ ðx0 � y0Þ þ ðx1 � y1Þe1 þ � � � þ ðx2n � y2nÞe2n ð4Þ

x̂ � ŷ ¼ x0 þ
X2n

i¼1

xiei

 !
y0 þ

X2n

i¼1

yiei

 !

¼ x0y0 þ
X2n

i¼1

ðx0yi þ y0xiÞei þ
X2n

i¼1

f ðxiÞ
" #

�
X2n

i¼1

f ðyiÞ
" #

e2nþ1 ð5Þ

where e2n+1 is a new noise symbol that is created during the compu-
tation. For any complex number z = a + jb, the function f() is defined
as f(z) = |a| + j|b|.

x̂
ŷ
¼ x0 � C þ

X2n

i¼1

ðC � xi �
1

AB
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þ f ðDÞ

" #
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where e2n+1, e2n+2 are new noise symbols that are created during the

computation. These new variables are defined as A ¼ y0 �
P2n

i¼1f ðyiÞ,
B ¼ y0 þ

P2n
i¼1f ðyiÞ, C ¼ BþAþ2

ffiffiffiffi
AB
p

2AB � 1
AB y0 and D ¼ BþA�2

ffiffiffiffi
AB
p

2AB , and the
function f() has the same definition as in multiplication.

2.3. Steps to radial distribution system power flow analysis

The basic power flow analysis method used in this study is the
backward/forward sweep power flow algorithm. However, to rep-
resent the uncertainties of the active and reactive power, power
injections of each node have been treated as affine forms rather
than fixed numbers, and consequently, the complex arithmetic
has been replaced by complex affine arithmetic.

Concrete steps are as follows:

Step 1: Number the nodes of the distribution system and define
the node count as N.
Step 2: Transform the given power injections into affine forms
with 2N noise symbols, with each node corresponding to two
noise symbols. For example, assuming the power injection of
node m is P + jQ and has a ±k% tolerance, it can be represented
by

Ŝm ¼ P þ jQ þ ðP � e2m�1 þ jQ � e2mÞ � k%: ð7Þ

The irrelevant noise symbols e1, . . ., e2m-2, e2m+1, . . ., e2N cannot be
found in the formula because the coefficients associated with them
just equal to zero.

Step 3: Obtain the given voltage at the root node and set the ini-
tial voltages to all the other nodes as 1 p.u.

With the preceding work above, the following steps are imple-
mented for the iterative solution of the system.

Step 4: At iteration k, the nodal current injection IðkÞi at node i can
be calculated by

IðkÞi ¼ ðSi=Uðk�1Þ
i Þ

�
ð8Þ

where Si is the power injection at node i expressed by affine forms
in Step 2 and Uðk�1Þ

i is the calculated voltage at node i during the
(k � 1)th iteration.

Step 5: The details of this step are the same as the traditional
backward/forward sweep except that the complex arithmetic
has been replaced by complex affine arithmetic. At iteration k,
the nodal affine form voltage UðkÞi is obtained by this step.
Step 6: At the end of iteration k, the distance between UðkÞi and
Uðk�1Þ

i , henceforth denoted by di, needs to be calculated for all
nodes i. Consider an affine form voltage expressed as

Û ¼ u0 þ u1e1 þ � � � þ unen ð9Þ

its corresponding interval form with upper and lower bounds can
be represented by

½U; U� ¼ ½u0 � rU ; u0 þ rU � ¼ u0 �
Xn

i¼1

f ðuiÞ; u0 þ
Xn

i¼1

f ðuiÞ
" #

ð10Þ

where rU is the total deviation of Û and f() has the same definition as
formulation (5)–(6). After transforming all the affine form voltages
into interval forms according to (10), di is calculated by

di ¼ max UðkÞi � Uðk�1Þ
i

��� ���; UðkÞi � Uðk�1Þ
i

��� ���� �
ð11Þ

If max(di), i = 1, 2, . . ., N, is less than the specified voltage error
tolerance limit, the power flow analysis has converged. Otherwise
the algorithm goes back to Step 4 to proceed with next iteration.

3. Case studies

To demonstrate the effectiveness of the proposed algorithm, it
is implemented on IEEE 33-bus and 69-bus test systems. In this let-
ter, the voltage error tolerance limit for convergence of the itera-
tive process is 10�4 p.u.

First, the proposed algorithm is used to analyze the 33-bus sys-
tem with an assumed ±20% tolerance on the given power injection
of each bus. The power flow solutions obtained by different algo-
rithms are compared in Figs. 1 and 2, with Fig. 1 showing the
bus voltage magnitude bounds and Fig. 2 depicting the bus voltage
angle bounds. Algorithm A is the algorithm proposed by this letter,
algorithm B represents the interval arithmetic-based algorithm [7]
and algorithm C is the Monte Carlo method with 10,000 trials.
Obviously, the ranges of solutions obtained by both the AA-based
and IA-based algorithms completely contain the bounds obtained
by the Monte Carlo method. This overlap demonstrates that both
of the first two algorithms can give proper approximations of the
power flow solution bounds. Notice also that the solution ranges
of the AA-based algorithm are narrower than that of IA-based algo-
rithm, which proves that the AA-based algorithm is able to reduce
the overestimation of bounds compared with the IA-based algo-
rithm, due to its accounting for correlations between different vari-
ables in the distribution system.

Next, both the 33-bus and the 69-bus test systems with uncer-
tainty tolerances from ±10% to ±50% are analyzed. The maximum
errors of bus voltage magnitudes and angles under different
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