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a b s t r a c t

Optimization of power generation mix is a significant strategy of climate change mitigation for countries
like India. This involves multi-objective optimization of cost reduction, emissions reduction and risk mit-
igation taking into account relevant constraints. We use a variant of portfolio optimization technique to
generate India’s 12th five year plan electricity generation portfolio taking into account the carbon costs.
For fitness evaluation of a generation portfolio, we use levelized generation costs and a Comprehensive
Risk Barrier Index (CRBI), the latter capturing the cost risks modulated by project implementation barrier
indices. For constrained optimization, we develop a fast hybrid algorithm, namely, Intelligent Pareto-
search Genetic Algorithm (IPGA), which systematically evolves successively efficient frontiers and finally
converges to the global Pareto-optimal front. This algorithm combines non-dominated sorting and sep-
arate elite population, while utilizing dual mode search for faster convergence and cluster reduction
strategy for enhancing diversity. Halting mechanisms have been proposed for local and global Pareto con-
vergence. We apply this generalized algorithm to simulate the impact of carbon costs, risks and barriers
on India’s optimal generation portfolio.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

New planning and risk management tools are important to re-
spond to uncertainty in climate change and the adaptation/mitiga-
tion policies of governments [1]. Optimization of energy strategy
portfolios is a critical component of such response. We have for-
mulated a methodology of hierarchical multi-objective optimiza-
tion of India’s energy strategy portfolios in this context [2,3].
Optimization of generation portfolio is a key component of the first
level optimization incorporated in this framework. Optimal gener-
ation planning is particularly important due to incorporation of
Renewables Portfolio Standards, which is fast emerging as a signif-
icant constituent of power generation portfolio worldwide. Despite
this trend, according to the projections of IPCC, the energy mix
supplied to run the global economy in the 2025–30 timeframe will
essentially remain unchanged, with more than 80% of energy sup-
ply based on fossil fuels [4]. As far as India is concerned, coal will
remain the mainstay of power generation during the 12th Plan
(2012–2017) providing at least 50% base load power, though
renewables’ share is growing steadily as mandated by the Electric-
ity Act, 2003.

Though renewables contribute 13% of global energy consump-
tion [5] today, most involve unsustainable uses of wood or hydro-

power with only 2% share of green new renewables and 6% nuclear.
Distributed generation using renewables or otherwise, has a num-
ber of advantages. The primary drivers of advancing distributed
generation [6] are limiting greenhouse gas (GHG) emissions, avoid-
ance of new transmission circuits and large generating plants, risk
reduction in electricity markets, improved power quality, reliabil-
ity and enhanced energy security. More than doubling of the
renewable energy generation in India is projected during the cur-
rent decade [7] accounting for 25% of the total energy consumed
by the year 2020–21.

Optimal generation planning with renewables in the portfolio is
an important strategy of climate change mitigation [8]. There are
various approaches to this optimization problem. Ref. [9] arrives
at an optimal generation mix for Malaysia using two-phase K-best
dynamic programming trade-off method, comparing coal, nuclear,
solar thermal and biomass technologies based on three criteria,
namely, economic cost, reliability and socio-environmental cost.
Ref. [10] presents a compromise model for optimal generation
mix calculations. A fuzzy linear programming optimization ap-
proach for generation planning in India for the year 2020 is indi-
cated in [11] and analytic hierarchy process is employed for
green energy sources selection in [12].

Mean variance portfolio theory has been applied to the Irish
electricity sector in [13]. A multi-parametric quadratic program-
ming technique is described for fast computation of portfolio prob-
lems in [14]. California Energy Commission [15] uses levelized cost
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estimates including carbon costs along with risks to assess the cli-
mate change impact of generation technologies. However, in the
context of a developing country like India, barriers to project
implementation are as important as cost risks while planning
capacity augmentation. We, therefore, propose a modified ap-
proach where we generate a composite index, namely, Compre-
hensive Risk Barrier Index (CRBI) and use it along with levelized
costs to generate efficient frontiers. To implement constrained
optimization, we devise a generalized genetic algorithm and opti-
mize India’s 12th five year plan electricity portfolio taking into ac-
count the impact of carbon costs.

2. Optimization approach for generation planning

Generally, countrywide policies have multiple objectives. Mul-
ti-criteria decision-making (MCDM) methods in an integrated
assessment framework offer a better alternative to cost/benefit
and similar methods [16]. Since bi-objective optimization is easy
to visualize and does not require computation of surfaces, it is pro-
posed for generation planning, the twin objectives of which have to
be carefully selected. Essentially, the first will be financial/eco-
nomic cost criterion and the second would relate to policy/project
implementation focusing on the quantification of risks and barri-
ers. Portfolio optimization techniques [14,17–19] can be employed
using these twin criteria to generate a Pareto-optimal portfolio.

Portfolio optimization is a bi-objective problem of maximizing
portfolio return and minimizing portfolio risk. Risk is estimated
by evaluating the standard deviation of the portfolio return, as in
the case of Sharpe ratio [20], though there are several ways of
defining risk [21]. For generation planning, we use portfolio level-
ized cost and risk to formulate a minimization problem. For a port-
folio, cost and standard deviations are computed by the matrix
equations,

Portfolio Cost; f 1ðXÞ ¼ Expectation of cost vector ¼ XTC ð1Þ

C ¼ Column vector of levelized costs

X ¼ Column vector of weights

Portfolio standard deviationðriskÞ; f 2ðXÞ ¼ ðX
TRXÞ0:5 ð2Þ

R¼Covariance matrix

¼

r1 0 . . . . . . 0
0 r2 . . . . . . 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .

0 0 . . . . . . rn

2
6666664

3
7777775
�

1 q12 . . . . . . q1n
q21 1 . . . . . . q2n
q31 q32 . . . . . . q3n
. . . . . . . . . . . . . . .

qn1 qn2 . . . . . . 1

2
6666664

3
7777775
�

r1 0 . . . . . . 0
0 r2 . . . . . . 0
0 0 . . . . . . 0
. . . . . . . . . . . . . . .

0 0 . . . . . . rn

2
6666664

3
7777775

ri ¼ Standard deviation of the ith elementðriskÞ
qij ¼Correlation coefficient between ith and jth elements:

ð3Þ

The mean variance portfolio optimization problem can then be
stated as:

Minimize f 1ðXÞ; f 2ðXÞ
subject to g1ðXÞ; g2ðXÞ . . . ; gkðXÞ � 0;

with x 2 S; S 2 Rn being the decision variable space:

ð4Þ

3. Comprehensive risk barrier index (CRBI)

Apart from the risks associated with each cost component, there
are barriers in implementing projects especially in the context of a
developing country like India. We use a comprehensive risk barrier

index (CRBI) to indicate the combined impact of risks and imple-
mentation barriers associated with each portfolio. While risk
parameters are estimated using the standard deviations of the
respective costs, multi-criteria ranking methods [22] can be used
to evaluate the barrier indices. Analytic hierarchy process (AHP)
[23,24] has been selected in this work which is an important mul-
ti-attribute weighting method making use of pair-wise comparison
matrices estimated based on expert judgments. AHP has been
implemented using Web HIPRE software [25] to obtain the Perron
vector (principal eigenvector) of the reciprocal comparison judg-
ment matrix. We use the consistency measure of this matrix as
in Web-HIPRE [26]. Risk and barrier indices are then integrated
into a composite index by a suitable combination function. The
estimated portfolio cost and portfolio CRBI give the fitness indica-
tion of a particular generation portfolio as against its competitors,
to be employed as inputs to the bi-objective minimization
problem.

We consider the following barrier profiles in the Indian
scenario:

(i) Land availability barrier.
(ii) Public policy support/barrier.

(iii) Environmental clearance barrier.
(iv) Infrastructure and resource availability barriers.
(v) Grid connection and market barriers.

In the AHP, the priority vector for each of the barriers is com-
puted using the pair-wise comparison matrix. Individual barrier
priority vectors are combined to compute the overall barrier index
vector for all energy technologies. If the barrier importance column
vector is B, and the matrix of barrier priority vectors is A, then the
overall barrier index vector for various energy technologies, P is gi-
ven by:

P ¼ AB ð5Þ

Portfolio barrier index; B ¼ XTP ð6Þ

The risk and barrier indices can now be aggregated to form the
comprehensive risk barrier index (CRBI) using a suitably weighted
risk-barrier combination function. CRBI is an index which captures
the combined impact of the risk and barrier random variables. A
proportionality function of these independent variables is the sim-
plest approach to capture this impact, though a variety of tele-
scopic functions are possible to accentuate or reduce the impact
of each at various regions of the domain. This is the choice to be
exercised by the policy maker as to what kind of relative functional
priorities need to be attached to the risk and barrier profiles. The
simple product function could be replaced by other choices such
as b2r, br2, b2r + br2 etc. where b is the barrier random variable
and r is the risk random variable. In this analysis, we utilize the
product function of the risk and barrier indices to generate CRBI.

Portfolio CRBI ¼ K � ðPortfolio barrierÞ � ðPortfolio riskÞ

¼ K � ðXTPÞ � ðXTRXÞ0:5 ð7Þ

where K is a positive constant.

4. Intelligent Pareto-search Genetic Algorithm (IPGA)

Though there are analytical approaches to solve optimization
problems, heuristics such as Genetic Algorithm are especially use-
ful for hard problems. Genetic algorithms are intrinsically parallel
due to which they can generate a number of near-optimal solu-
tions. They have been gainfully employed in many power sector
problems such as economic dispatch [27,28], electric load forecast-
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