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a b s t r a c t

The energy-intensive enterprises (EIEs) account for a significant part of the total electricity consumption
in most industrial countries. In the smart grid environment, electric load forecasting in EIEs plays a crit-
ical role in the security and economical operation of both the main grid and the EIEs’ micro-grid. How-
ever, the accuracy of such forecasting is highly variable due to the strong stochastic nature of the load
in EIEs. In this circumstance, probabilistic forecasts are essential for quantifying the uncertainties asso-
ciated with the load, thus is highly meaningful for assessing the risk of relying on the forecasts and opti-
mizing the energy systems within EIEs. This paper focuses on the day-ahead probabilistic load forecasting
in EIEs, a novel sparse heteroscedastic forecasting model based on Gaussian process is developed. With
the proposed model, we can provide predictive distributions that capture the heteroscedasticity of the
load in EIEs. Since the high computational complexity of Gaussian process hinder its practical application
to large-scale problems such as load forecast, the proposed model employs the ‘1/2 regularizer to reduce
its computational complexity, thereby enhancing its practical applicability. The simulation on real world
data validates the effectiveness of the proposed model. The data used in the simulation are obtained in
the real operation of an EIE in China.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In many industrial countries, the electrical energy consumption
in energy-intensive enterprises (EIEs) constitutes for a significant
part of the country’s total energy use. These EIEs includes steel
plants, alumina plants, petrochemical plants, cement plant, etc.
In many cases, EIE has its own self-generating power plant, thus
forming a micro-grid. This micro-grid is connected to the main grid
through the substations or feeders, as in Fig. 1. Since the electric
load in EIEs is affected by the start-up and shut-down of some high
power consuming production units, e.g., electric furnace in steel
plant, the load in EIEs is highly volatile and sharply fluctuating. Be-
cause the micro-grid in EIEs are connected to the main grid, these
uncertain burst loads pose several challenges to both utilities and
EIEs, such as stability, power quality, and especially power dis-
patching [1–3]. Specifically, from the viewpoint of utilities, the
uncertain burst loads from EIEs may have an adverse impact on
the power quality, e.g., large fluctuations in voltage and frequency.
From the viewpoint of the EIEs, the burst load reduces the opera-
tional efficiency of their own self-generating power plant, so EIEs
have to purchase additional burst loads following capability, spin-
ning reserves, and some other ancillary services from the main

grid, thus increasing its energy costs [2]. In the smart grid environ-
ment, optimized scheduling among self-generating power plant,
shiftable loads, energy storages, and utility power supply has a
great potential to address these challenges [3]. Because of the exis-
tence of high uncertainties in EIEs’ energy consumption, a stochas-
tic scheduling model is more appropriate than a deterministic one
for the EIEs’ energy system. This is due to the fact that the former
could introduce caution, flexibility and robustness in the solution.
Such a stochastic scheduling model leads to the requirement of
probabilistic load forecasting in EIEs. In addition to the point
prediction values, probabilistic load forecasting also provides the
predictive distributions of the future load, thus quantifying the
uncertainties associated with the EIEs’ load. This information of
uncertainties is the stepping stone for a stochastic scheduling
model. Furthermore, probabilistic forecasts can also be used to im-
prove the dynamic demand response, investigate the power flow
[4,5], and evaluate the system reliability [6].

Various techniques have been proposed for the electric load
forecasting. However, almost all of them focus on the main grid
or the metropolitan power grid [7–14]. As stated above, the load
characteristic of EIEs is significantly different from that of the main
grid, so the existing load forecasting methods in literatures for the
main grids are not appropriate for the load forecasts in EIEs. To the
best of our knowledge [15,16] are the only previous works that ad-
dress the load forecasting in EIEs. In [15], a gradient-boosting
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ensemble learning algorithm for non-stationary time series is
established, and applied to the load forecasts in a large scale steel
plant. In [16], a template-based technique along with template
scaling and equivalence algorithms is proposed to solve the EIEs’
load modeling problem, and is applied to an oil refinery facility.
Although these two methods show some promising results, they
only provide the point forecasts, but not the probabilistic forecasts.

From a statistical point of view, probabilistic load forecasting for
EIEs is a probabilistic regression problem. Gaussian process (GP) is a
powerful tool for probabilistic regression [17]. Since GP is a fully
probabilistic model, it can give predictive distributions, i.e., proba-
bilistic forecasts, rather than merely point predictions. Standard GP
simply assumes that the variance in data is Gaussian and its level is
uniform throughout all data points. However, this assumption is
unreasonable for some real applications such as load forecasting
in EIEs. In following sections, we will show that although the uncer-
tainty associated with the load in EIEs can be quantified by Gauss-
ian distributions, the level of such uncertainty cannot be assumed
to be uniform due to the start-up and shut-down of some high
power consuming production units. Consequently, the variances
of the load series in EIEs can be time varying, i.e., the load series
in EIEs is a heteroscedastic time series. In such a circumstance, stan-
dard GP may misestimate the variances of this time series, thus
giving poor predictive distributions. Furthermore, since the mises-
timation of the variances makes the GP oversmooth or under-
smooth, the point prediction performance is also affected.
Heteroscedastic Gaussian Process (HGP) is an extension of the stan-
dard GP, it models the uncertainty level using a second GP in addi-
tion to the GP governing the noise-free output [18]. This way, HGP
handles the non-uniform and input-dependent uncertainty levels,
thereby capturing the local volatility of the load in EIEs. Therefore,
HGP is suitable for the probabilistic load forecasting in EIEs.

A major limitation of HGP is its high computational complexity.
One HGP consists of two standard GP base models, each of them
costs O(N3) for training and O(N2) for predicting, where N is the
number of training points. This high computational complexity se-
verely limits its scalability to large problems. When training a load
forecasting model for EIEs, in general, there is a large amount of
data available from the supervisory control and data acquisition
(SCADA) system. In this case, the high computational complexity
of HGP makes its training and real-time forecasting intractable,
thus hindering its practical application. Therefore, from a practical
viewpoint, we have to reduce the computational complexity of
HGP before applying it to the probabilistic load forecasting in EIEs.

To address the above issues, this paper presents a new approach
for the probabilistic load forecasting in EIEs. To effectively handle

the heteroscedasticity in EIEs’ load series and the large-scale fore-
casting problems, the proposed method is developed to be a sparse
heteroscedastic model, referred to as SHGP. In SHGP, to deal with
the heteroscedasticity, a heteroscedastic GP model is employed
to model and predict the variances. To handle the large-scale prob-
lems, SHGP reduces the computational complexity by sparsifiying
its base models. The newly introduced ‘1/2 regularizer [19] is em-
ployed for this sparsification. Compared to the popular regularizers
such as ‘1 [20], ‘1/2 regularizer generally gives more sparse solu-
tions. By benefiting form this sparse nature of ‘1/2 regularization,
SHGP has a significantly lower computational complexity com-
pared to HGP. Considering the schedule horizon of the self-gener-
ating power plant in EIEs, we focus on the day-ahead forecasting,
i.e., 24 h forecasting horizon.

The remainder of this paper is organized as follows. A detailed
description of the proposed SHGP model is presented in Section 2.
Section 3 analyzes the load characteristics of EIEs, and shows how
to select the input features for model training. Section 4 contains
the description of the numerical experiments and the discussion
of the results. The data used in the experiments are obtained from
the real operation of a steel plant in China. Section 5 concludes the
paper.

2. Sparse HGP based on ‘1/2 regularization

Because of its heteroscedastic property, HGP is suitable for the
probabilistic load forecasting in EIEs. However, when applying
HGP to a practical load forecasting system, an important issue
must be addressed. That is, the high computational complexity of
the standard HGP makes the training and real-time forecasting
intractable for large problems. To address this issue, we present a
sparse HGP model, which reduces the computational complexity.
We refer to this sparse HGP model as SHGP. In this section, we
show how to establish this SHGP model using ‘1/2 regularization.
Before introducing the proposed model, we give a brief review of
HGP in Section 2.1. In Section 2.2, we present the proposed SHGP
model.

2.1. A brief review of HGP

The probabilistic load forecasting in EIEs is a probability regres-
sion problem, which can be formulated as: at time stamp t, given
forecasting horizon h and a set of input feature xt+h|t, forecast the
future load distribution p(yt+h|xt+h|t) at time stamp t + h. As men-
tioned earlier, this paper focuses on the day-ahead forecast, i.e.,
we only perform the single-step ahead forecasting. Therefore, the
forecasting model can be expressed as

pðytþhjXtþhjtÞ ¼ gðXtþhjtÞ;

where g denotes the probabilistic forecasting model. The input fea-
tures form the D dimension input vector x, while the actual electric
load measurements form the corresponding real valued target y.

HGP is a heteroscedastic regression model, which takes into ac-
count the input-dependent noise. Given a dataset D ¼ ðX; yÞ con-
sisting of N input vectors X ¼ fXngN

n¼1 and corresponding targets
y ¼ fyng

N
n¼1, in HGP we assume that the relationship between the

input vector and the target is given by

yn ¼ f ðXnÞ þ �n; ð1Þ

here �n � Nð0;r2
nÞ is the input-dependent noise, which models the

time changing variance, thus hitting the heteroscedasticity. f is the
latent function. By placing a Gaussian process prior on f and assum-
ing a noise rate function r2

n ¼ rðXnÞ, the predictive distribution
p(y�|x�,X,y) at a testing point x� is a Gaussian distribution, which
is given by

Utility power supply

G

Self-generating 
power plant

M

Motor 
loads

Heating
loads

Static 
loads

Micro-grid in EIE

Main grid

Bus 1

Bus 3

Transformer 1

EAF

Bus 2

Transformer 2

Fig. 1. Diagram illustrating a micro-gird in EIE.
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