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a b s t r a c t

In view of the low frequency, low damping ratio and long duration characteristics of the inter-area oscil-
lation mode, the stable region is firstly extended by the eigenvalue shifted factor in this paper. Further-
more, a non-convex stable region is designed which can stabilize the system rapidly. Then a mixed H2/H1
multi-objective robust control strategy based on the non-convex stable region is proposed considering
the perturbation and system uncertainty. Finally, time-domain and frequency-domain simulations are
carried out in the 4-machine and 16-machine test systems respectively, and simulation results verify that
the proposed strategy is more effective and robust than the traditional H2/H1 control strategy.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Inter-area oscillation usually exists in weakly interconnected
power systems [1]. With its wide-spread influence, long duration
time, and being difficult to be damped using local information
[2], it has become one of the most prominent threats to system
safety and stability. Conventional control methods are mostly
based on traditional control theories [3], including phase compen-
sation method, pole assignment method and sensitivity analysis
method, etc. As the modern control theory becomes more sophis-
ticated, many new control methods have been introduced into
the design of system damping control, such as linear optimal con-
trol [4], adaptive control [5,6], and robust control [7,8]. The linear
optimal control adopts the sum of the squares of state variables
and control variables as the performance indicator and obtains
the optimum control by solving the Riccati equation. Adaptive con-
trol works by adjusting the control principle continuously with the
changing operating condition to guarantee that the control
performance stays close to that of the reference model. These
two methods both have sufficient damping when the system and
perturbation models are accurately built. But when uncertainty oc-
curs in these models, the damping effect can hardly be guaranteed
with these methods.

In comparison, robust control methods have unique superiority
in dealing with the uncertainty in system parameters and the
external perturbation [9,10]. Ref. [11] presents a polytope based
damping controller designed to accommodate multiple cases with
different operating conditions. Ref. [12] presents an optimization-
based tuning scheme used for coordination of structurally
constrained PSSs and SDCs to damp interarea oscillations and to
optimize their control efforts under multiple operating conditions.
Furthermore, the mixed H2/H1 control theory is favored by many
specialists and scholars due to its comprehensive consideration
of factors such as the system stability and robustness [13–16]. In
the design of the mixed H2/H1 controller, the system oscillation
mode needs to be shifted to the left half-plane or a pre-designed
stable region in order to guarantee the dynamic and steady-state
performance of the closed-loop system. The shifting is conducted
according to the Gutman theorem [17] in traditional methods,
but it is limited to the convex region.

In view of the low frequency, low damping ratio and long dura-
tion characteristics of the inter-area oscillation mode, the stable re-
gion is firstly extended by the eigenvalue shifted factor in this
paper. Furthermore, a non-convex stable region is designed which
can stabilize the system rapidly. Then a mixed H2/H1 multi-objec-
tive robust control strategy based on the non-convex stable region
is proposed considering the perturbation and system uncertainty.
Finally, time domain and frequency domain simulations are con-
ducted in the 4-machine and 16-machine test systems respec-
tively, and simulation results verify that the proposed strategy is
more effective and robust than the traditional H2/H1 control
strategy.
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2. H2/H‘ robust control strategy based on the non-convex stable
region

2.1. Non-convex stable region

Lemma 1 [18]. The Lyapunov 1st method. For the plantP
: ðA;B;C;DÞ, there are:

_x ¼ Axþ Bu
y ¼ Cxþ Du

ð1Þ

where x is the system state vector, u is the control input vector, y is the
output vector, A is the system state matrix, B is the control input matrix,
C is the output matrix, and D is the feed forward matrix.

In the equilibrium state where xe = 0, the necessary and suffi-
cient condition for the system to be asymptotically stable is that
all eigenvalues of matrix A have negative real parts.

Lemma 2 [19]. The fact that all the eigenvalues of matrix A 2 Rn�n

have negative real parts equals to that there is a symmetric matrix
X > 0 which satisfies AX + XAT < 0.

The oscillation modes of the system can be shifted to the stable
region in the left half-plane by Lemmas 1 and 2. However, this
method cannot guarantee enough damping for all the oscillation

modes. Thus, according to the Gutman theorem, as long as there
is a positive definite symmetric matrix X that meets Eq. (2), all
eigenvalues of matrix A should be in the stable region M described
by Eq. (3).X

k;l

cklA
kXðATÞ

l
< 0 ð2Þ

M ¼ z 2 C :
X

06k;l6m

cklzk�zl < 0

( )
ð3Þ

Nomenclature

x system state vector
u control input vector
y output vector
A system state matrix
B control input matrix
C output matrix
D feed forward matrix
z any point on the complex plane
ckl kth row ith column element of matrix M
C1 the weight matrix of state variables
D12 the weight matrix of control input related to the perfor-

mance indicator of H1
D11 the weight matrix of perturbation input related to the

performance indicator of H2

(c0, 0) the coordinates of the center
MR1 the corresponding set
U(F) coefficient matrix expressed in terms of variable F
c the given upper bound c for H1 performance
w external perturbation input vector
z1 controlled vectors related to the performance indexes of

H1

z2 controlled vectors related to the performance indexes of
H2

B1 gain matrix of input w
B control input matrix
F eigenvalue shifted factor matrix
a the weights of the H2 performance index
b the weights of the H1 performance index.
m the order of M matrix
D11 the weight matrix of perturbation input related to the

performance indicator of H1
C2 the weight matrix of state variables
D12 the weight matrix of control input related to the perfor-

mance indicator of H2

d the intersection point of the non-convex region and
imaginary axis

X positive definite symmetric matrix
V(F) coefficient matrix expressed in terms of variable F
g the given upper bound for H2 performance
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d

h

Fig. 1. The mapping of complex planes.

Fig. 2. Test system of 2-area 4-machine.

Fig. 3. Structure of TCSC supplementary controller.

Table 1
Dominant modes in 4-machine system without controllers.

Mode Frequency (Hz) Damping ratio Mode type

1 0.4926 0.0086 Inter-area
2 1.0854 0.0773 Inner-area
3 1.0948 0.0724 Inner-area
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