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a b s t r a c t

Wind farm diversification can smooth out the fluctuations in wind power generation and reduce the asso-
ciated system balancing and reliability costs. Recent research has shown that wind farm diversification
can be approached using mean–variance method. Traditional mean–variance wind farm diversification
method is sensitive to the input data. To overcome the problem of lack of robustness, this paper proposes
a novel wind farm diversification method based on robust optimization model. Under box and ellipsoidal
uncertainty structures, the proposed robust optimization model can be formulated as a coupled problem
composed of a linear programming problem and a conic quadratic programming problem. This model
could be efficiently solved. Case studies are provided to demonstrate application of the model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid development of world economy, people have
paid more attention to the consumption of fuel and the protection
of environment than ever before. Wind power is one of the world’s
largest and most accessible sources of renewable energy. Com-
pared to the environmental impact of traditional energy sources,
the environmental impact of wind power is relatively minor in
terms of pollution. Wind power consumes no fuel, and emits no
air pollution, unlike fossil fuel power sources. Many countries have
adopted the policies prioritizing high wind power penetration [1–
3].

However the intermittent and uncertain nature of wind power
generation currently prevents it from being widely adopted within
national electricity systems. How to overcome the problem of wind
power variability is the main challenge for wind energy develop-
ment. An efficient way to solve this problem is to smoothing out
the overall wind power output, in order to reduce its variability
and make it more predictable. To some extent, geographical diver-
sification of wind energy capacity can help to flatten this variability
[4–8]. The larger geographical area is considered, the more signif-
icant this effect is shown, leading further to the possibility of
increasing the amount of wind power installed into the system
[9–10].

Kahn [4] was the first to systematically analyze these effects for
arrays of wind farms of different sizes. In estimating the increased

reliability of spatially separated wind plants, Kahn pointed out that
‘‘wind generators can displace conventional capacity with the reli-
ability that has been traditional in power systems’’. Milligan [5]
proposed an algorithm based on production costing/reliability
methods to find the most reliable allocation of wind power over
various wind farms. In particular, Archer and Jacobson [6] pointed
out that wind farm diversification would produce ‘‘steady deliver-
able power’’. They found that ‘‘an average of 33% and a maximum
of 47% of yearly averaged wind power from interconnected farms
can be used as reliable, baseload electric power’’. Furthermore,
mean–variance portfolio theory was extensively applied to wind
farm diversification by Drake and Hubacek [11]. They analyzed
the average power and standard deviation of several allocations
of capacity among four simulated wind farms in the UK to find
the allocation with the least amount of wind power variability. Ro-
ques et al. [12] and Yannick et al. [13] applied mean–variance port-
folio theory to identify cross-country wind farm diversification
that reduced the variability of wind power. But none of them de-
tailed their approaches about how they used the data [11–13].
Additionally, Degeilh and Singh [14] introduced a mean–variance
framework based on Lagrange multipliers theory to optimize the
geographical distribution of wind farms. However, in this wind
farm diversification framework, the optimal wind power distribu-
tion is very sensitive to the mean and covariance matrix.

This paper focuses on the problem proposed by Degeilh and
Singh [14]. To overcome the problem of lack of robustness, we
propose a novel wind farm diversification method via robust
optimization model. The main contributions of this paper are
threefold. First, we define the concept of conditional risk available
energy. Accordingly, we study wind farm diversification through
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maximizing the conditional risk available energy. Second, we apply
robust optimization techniques to handle the input wind power
data uncertainty. Third, we illustrate the efficaciousness and
robustness of our proposed model using the IEEE-RTS test system.

The presentation in the paper proceeds as follows. In the second
section, the new ideas promoting a diversification of the wind
farms are discussed and formalized mathematically. In the third
section, a robust optimization under wind power uncertainty pro-
cess is presented and implemented. Moreover, the tractable formu-
lations under box and ellipsoidal uncertainty sets are described. In
the fourth section, the case studies are presented to validate the
proposed approach. The last section is the conclusion.

2. A novel wind farm diversification method

The diversification of wind farms studied in the recent papers
shares many similarities with that of an investment portfolio, since
diversifying approaches for both are developed from the
mean–variance theory [11–14]. The basic idea is to avoid a risky
dependence on only one source of power/profit because of its
unpredictability. In mean–variance analysis framework, risk is
defined as the variance of wind power. The optimal wind power
distribution is obtained by minimizing the variance of the sum of
the various wind farm power outputs. However, when maximizing
the part of the wind energy that may provide a stable baseload, the
value at risk of the overall energy production is more important
than its variance. Therefore, Grothe and Schnieders [15] focused
on the allocation of wind turbines by maximizing value at risk of
the power supply instead of minimizing the variance. Following
this point of view, our study focuses on the allocation of wind
energy capacity through maximizing the conditional risk available
energy, instead of minimizing the variance of the energy. At the
same time, uncertainty of input parameter based on robust optimi-
zation will be considered in the next section.

The definition of conditional risk available energy follows from
the idea of conditional value at risk [16–17] and conditional robust
profit [18–19]. Let f(x, w) denote the wind energy production
function with decision vector x e X # Rn and wind power output
vector w e Rm. If the density function of w is given by p(w), then
the probability of f(x, w) not falling below a threshold a is repre-
sented as

wðx;aÞ ¼
Z

f ðx;wÞPa
pðwÞdw ð1Þ

and the risk available energy(RAEb) for a given confidence level b
(usually greater than 0.9) is

RAEbðxÞ ¼maxfa 2 R : wðx;aÞ � bg ð2Þ

where R is a real set. Consider that the energy is below the RAEb(x),
the corresponding conditional risk available energy (CRAEb) is

CRAEbðxÞ ¼
1

1� b

Z
f ðx;wÞ6RAEbðxÞ

f ðx;wÞpðwÞdw ð3Þ

From a practical viewpoint, this consideration still makes sense for
continuous distributions, since we usually use a discretization pro-
cedure to approximate the integral resulting from a continuous dis-
tribution. Let the sample space of a random vector w be given by
{w[1], w[2], . . . , w[S]} with probabilities Pr{w[k]} = pk and

PS
k¼1pk

¼ 1. Denote p = (p1, p2, . . . , pS)T. The auxiliary function is defined as

Gbðx;a;pÞ ¼ aþ 1
1� b

XS

k¼1

pk½f ðx;w½k�Þ � a�� ð4Þ

where [f(x, w[k]) � a]� = min {f(x, w[k]) � a, 0}. Then we have the
formula

CRAEbðxÞ ¼max
a2R

Gbðx;a;pÞ ð5Þ

3. Robust optimization for wind power uncertainty

The wind farm diversification model in (5) assumes exact
knowledge of the density function p(w). This assumption may
not be realistic, particularly in cases where enough data samples
are not available, or when the data samples are unstable. Instead
of assuming that the random vector w obeys a specific distribution,
we assume that the distribution of w is to be determined from the
candidates of a set of distributions. Let }p denote } in the sense of
discrete distribution. Instead of assuming a given p, we assume p
belongs to a uncertainty set }p. The robust optimization approach
targets the handling of the data uncertainty. It has been proved to
be an effective method in practice [20,21].

3.1. Robust optimization

In mathematical optimization, we generally assume that the
data is precisely known. We then seek to maximize (or minimize)
an objective function over a set of decision variables as follows:

max f 0ðx;D0Þ ð6Þ

subject to

fiðx;DiÞ 6 0 8 i 2 I

where x is the vector of decision variables and Di, i e I [ {0} are the
data that is part of the inputs of the optimization problem.

The input parameters in many real-world optimization prob-
lems are uncertain. The robust optimization approach is presented
to handle the input data uncertainty. The framework of robust
optimization is [22,23]:

max min
D02U0

f 0ðx;D0Þ ð7Þ

subject to

fiðx;DiÞ 6 0 8 i 2 I; 8 Di 2 Ui

where Ui, i e I [ {0}, are the given uncertainty sets.
Under robust optimization framework, the robust conditional

risk available energy (RCRAEb) for fixed x e X with respect to }p is
defined as

RCRAEbðxÞ ¼ max
a2R

min
p2}p

Gbðx;a;pÞ ð8Þ

Particularly, if }p is a compact convex set, the problem of maximiz-
ing RCRAEb(x) can be written as

max h ð9Þ

subject to

h 6 min
p2}p

aþ 1
1� b

XS

k¼1

pkuk ð9:1Þ

uk 6 f ðx;w½k�Þ � a ð9:2Þ
uk 6 0; k ¼ 1;2; � � � ; S ð9:3Þ
x 2 X ð9:4Þ

The above problem could not be directly solved by classical optimi-
zation theory because of the min operation involved in the con-
straints. In the following, tractable formulations can be obtained in
cases where }p is assumed to be a box or ellipsoidal uncertainty set.
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