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a b s t r a c t

This paper describes a new methodology for the optimization of an n-conductor electrical system, in
which the phase imbalances, different types of loads, neutral cables, groundings and other inherent char-
acteristics of distribution systems are taken into account. In addition, the methodology is useful for the
detailed analysis required for smart grids. A formulation for the optimal power flow of an n-conductor
system was developed using a primal–dual interior point method and the n-conductor current injection
method in rectangular coordinates. Distribution and transmission systems were analyzed to verify the
generality and efficiency of the proposed methodology.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the increase in the distributed generation of distribution
systems and the new paradigm of smart grids, new computational
tools and better equipment models that enable the representation
of electrical networks in detail are needed; indeed, with more-
accurate results, more-detailed analyses can be performed [1].
The use of tools that represent such systems as close to reality as
possible, incorporating the specified demands of each system, will
allow for a much more accurate depiction of the systems and thus
will allow the systems to be properly optimized, taking full advan-
tage of their potential. Currently, for smart grids, this need for opti-
mization is greater than ever.

Thus, it is highly important to use tools for the optimization of
multiphase electrical systems to determine the conditions of opti-
mal operation from a given objective function, always obeying the
restrictions and operational capacity of the equipment and
accounting for imbalances. Some optimal power flow algorithms
for distribution systems have been based on methodologies previ-
ously developed for EHV and UHV transmission networks [2–12],
and a few algorithms have been developed for three-phase systems
[13–15] but none for multiphase systems.

In [16,17], two power flow methodologies based on the current
injection method are presented, which use the Newton–Raphson
method to solve for unbalanced three-phase systems. It was ob-
served that the solutions obtained using single-phase or sequence

tools to solve unbalanced three-phase problems does not depict
the actual operating conditions of electrical systems and may not
be sufficient, depending on the level of detail required and the pur-
pose of the study to be conducted.

In [18], a methodology for solving n-conductor electrical
systems was presented that provided important advances over
previous methodologies. All of the advances are detailed in the
work mentioned; however, we highlight the following: the
methodology does not use the submatrices from previous current
injection methodologies; it enables the representation of systems
with n-conductors; it can represent any type of equipment and
their connections and therefore utilizes dimensions strictly neces-
sary for representing a given system. Its greatest advantage is that
it is a general method.

Considering the facts presented, there is a need to also develop
a multiphase formulation for the optimization of electrical sys-
tems, especially one that permits a detailed representation of the
characteristics of distribution systems containing n-conductors,
in addition to enabling joint studies between transmission, sub-
transmission and distribution and more complete analyses for
smart grids. Thus, considering all of the advances obtained in
[18], a methodology for optimization was developed, which was
named Multiphase Optimal Power Flow (MOPF). The method ap-
plies the technique of primal–dual interior points to the model of
n-conductor power flow. The MOPF will be presented in the follow-
ing sections.

The organization of the paper is described next. The MOPF is
developed in Section 2. Component models in MOPF are presented
in Section 3. Objective functions are proposed in Section 4 and a
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MOPF algorithm in Section 5. Section 6 provides three numerical
examples a and conclusions are presented in Section 7.

2. Multiphase optimal power flow

The basis of the proposed methodology is the current injection
method. By analyzing the current injection equations, it can be
concluded that in each node of the system, the current injection
sum is composed of parts related to all elements connected to that
node; it can also be concluded that each system element provides a
current injection contribution to the nodes to which it is connected
[18]. To illustrate, the sum of the currents, considering both real
and imaginary parts, at node k, a of Fig. 1 is indicated by:

IRe;ka ¼ IRe;trf ;ka þ IRe;lin;ka ¼ 0
IIm;ka ¼ IIm;trf ;ka þ IIm;lin;ka ¼ 0

ð1Þ

The two main MOPF constraint equations are for the real and
imaginary parts of the currents (IRe and IIm) and are written in rect-
angular coordinates, where the variables are the real and imagi-
nary parts of the nodal voltages (VRe and VIm); the active and
reactive power injections (P and Q) and the appropriate variables
arising from control devices (w). In general, the MOPF problem
can be defined by:

min f ðzÞ
s:a
IReðzÞ ¼ 0
IImðzÞ ¼ 0
gðzÞ ¼ 0
hðzÞ 6 0
zmin 6 z 6 zmax

ð2Þ

where f(z) is a specific function that should be optimized, IRe(z) = 0
and IIm(z) = 0 are the sums of the currents injected in the nodes of
the system, g(z) = 0 represents the other equality constraints,
h(z) 6 0 represents the inequality constraints, z are the decision
variables of the problem (state and control) and zmin 6 z 6 zmax

are the lower/upper variable limits.
In this paper, the inequality constraints are transformed into

the equality constraints through the use of slack variables. The re-
sults obtained are presented in:

Lðz; k;pÞ ¼ f ðzÞ �
Xnn

i¼1

kIm;iIRe;iðzÞ �
Xnn

i¼1

kRe;iIIm;iðzÞ �
Xni

i¼1

kigiðzÞ

�
Xnd

j¼1

pj;1ðzj � zj;min � sj;1Þ � l
Xnd

j¼1

logðsj;1Þ

�
Xnd

j¼1

pj;2ðzj � zj;max þ sj;2Þ � l
Xnd

j¼1

logðsj;2Þ ð3Þ

where nn is the number of nodes in the electrical system, ni is the
number of equality constraints plus the number of inequality con-
straints, nd is the number of inequality constraints and lower/upper
variable limits, kRe, kIm, p1 and p2 is the Lagrange multipliers (dual
variables), s is the Slack variables associated with the inequality
constraints and lower/upper variable limits, l is the barrier param-
eter (l > 0).

It should be noted that in MOPF the contributions of the
injected currents in the nodes to the Lagrange function are also
written as the individual input contributions of each element. To
illustrate, the contributions related to node k, a in Fig. 1 to the
Lagrange function are shown in:

LkaðzÞ ¼ �IIm;trf ;kaðzÞ � kRe;ka � IIm;lin;kaðzÞ � kRe;ka � IRe;trf ;kaðzÞ
� kIm;ka � IRe;lin;kaðzÞ � kIm;ka ð4Þ

In a multiphase formulation, the contribution of each element is
useful because the models are quite different due to the various
possibilities of connections (e.g., transformers) and neutral,
grounding and mutual impedances. Often, information regarding
other phases is needed to define the injection of current in a given
phase [18]. Thus, the total contributions of each element were con-
sidered throughout the MOPF formulation.

To assemble the Hessian matrix (Jacobian matrix of the opti-
mality conditions) and solve the linear system, the procedure de-
scribed in [5] was used, in which only the primal variables and
the dual k variables are explicitly represented in the Hessian ma-
trix. The p and s variables are updated each iteration externally
to the Hessian matrix. The linear system that should be solved in
each iteration is given by:

r2Lðz; kÞ � D½z; k� ¼ �rLðz; kÞ ð5Þ

The structural form of the Hessian matrix (r2Lðz; kÞ) used in the
proposed methodology is shown in Fig. 2 for a node k.

The independent vector rL(z,k) is composed of the first-order
derivatives of the Lagrange function with respect to the primal
and dual variables. The sequence of the vector independent vari-
ables is the same as that in the Hessian matrix.

In MOPF, for each equipment, it is then required to define its
contributions to the Lagrange function, independent vector and
Hessian matrix, and all models are based on equations injection
currents in rectangular coordinates in the nodes to which the com-
ponents are connected.

Fig. 1. Example of a multiphase current injections. Fig. 2. Structural form of the Hessian matrix.
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