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a b s t r a c t

In this paper, Bayesian Network (BN) is used for reliability assessment of composite power systems with
emphasis on the importance of system components. A simple approach is presented to construct the BN
associated with a given power system. The approach is based on the capability of the BN to learn from
data which makes it possible to be applied to large power systems. The required training data is provided
by state sampling using the Monte Carlo simulation. The constructed BN is then used to perform different
probabilistic assessments such as ranking the criticality and importance of system components from reli-
ability perspective. The BN is also used to compute the frequency and duration-based indices without
time sequential simulation based inferences. The proposed approach provides the possibility of assessing
the components importance in view of different load points.

The validity and efficiency of the proposed approach is verified by application to the IEEE-Reliability
Test System (RTS).

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The common purpose of power system reliability studies is to
provide probabilistic analysis to determine various reliability indi-
ces to evaluate the adequacy of power system in supplying the to-
tal load. However, analyzing the effect of individual components in
system reliability and ranking is also of high importance for a vari-
ety of purposes such as determining the background of outages,
system reinforcement, maintenance scheduling, and expansion
planning and so on, all performed to improve system reliability.

Bayesian Network is one of the most efficient probabilistic
graphical models to represent uncertain information and infer-
ences thereof. BNs have found wide applications in many fields
and they especially have been used in power system studies [1–
3]. BNs have recently been used as an appropriate probabilistic
framework in reliability studies. Various applications of the BN
are also reported in power system reliability assessments.

The first step in applying the BN in system study involves deter-
mining its structure and parameters. BN is mainly utilized for reli-
ability assessment of generating systems [4] as well as power
distribution systems [5–10]. In [11], the BN is used in reliability
assessment of a small composite power system constructed on
the basis of the system’s physical topology interpreted by its fault
tree and minimal cut-sets or tie-sets. Refs. [6–9] present methods

based on time sequential simulation technique to perform infer-
ences by the BN to compute frequency and duration based indices.
A D–S evidence inference method with Bayesian Network is em-
ployed in [10] for reliability evaluation of distribution system in
the case of lack of original data. This approach considers the im-
pacts of uncertain information on the system reliability.

In these studies, the BN is constructed on the basis of expert be-
liefs, cause-and-effect relationships, and physical topology of sys-
tems. Particularly, constructing the BN associated with the
composite power systems necessitates access to the fault tree,
minimal cut-sets or tie-sets of the given system. But for a compos-
ite power system with a generally non-radial topology, identifica-
tion of minimal cut-sets or tie-sets or constructing the fault tree of
system, especially with regard to the different operational condi-
tions in the system is not practical. In [12], the common structure
learning algorithms were used to construct the BN for a power sys-
tem with a relatively large burden of computation.

In this paper, a simple approach based on the learning capabil-
ity of the BN from data is proposed to construct the BN associated
with a composite electric power system. The required training data
is generated by state sampling using the Monte Carlo simulation.
The obtained BN is then used for importance ranking of individual
system components, computation of frequency and duration-based
reliability indices and to perform other probabilistic assessments
that may not be easily handled by the conventional methods.

The rest of this paper is organized as follows. In Section 2, the
BN is briefly introduced. The approach used for data generation
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is presented in Section 3. A method to construct the BN is proposed
in Section 4 and then it is applied to the IEEE-RTS in Section 5. In
this section, the obtained BN is used for different inferences and
components ranking from different aspects. The paper is concluded
in Section 6.

2. Bayesian Network

A Bayesian Network is a graphical probabilistic model consist-
ing of two parts; the structure and the parameters. The structure
of BN is a directed acyclic graph (DAG) which its nodes are related
to random variables and directed arcs from parent to child repre-
senting influential and casual relationships between variables.
The BN parameters are conditional probability distributions (CPDs)
assigned to the nodes that define probabilistic relationship be-
tween each node and its parents. The nodes without parents,
named roots, are described with their marginal probability distri-
butions. The nodes without any child are known as leaf nodes [13].

The structure and parameters of a BN are such that it defines a
unique joint probability distribution over variables and so it lifts
the need for a joint probability distribution table of variables
whose size increases super-exponentially when the number of
variables increases. It is possible to compute any conditional and
marginal probability of events by using different inference algo-
rithms from the BN [14].

3. Generation of training data

As mentioned earlier, to construct the BN by the proposed ap-
proach, a training data set is required. The data set consists of state
vectors S ¼ ½G1; . . . ;Gng ; L1; . . . ; Lnl;Bus1; . . . ;Busm; SF� where Gi de-
notes the ith set of similar generators placed on the same bus con-
sidered as a derated generating unit and its value is equal to the
number of its related generators in failure states. Li denotes the
state of transmission line or power transformer i and is equal to
one if it is in the failed state, otherwise it is zero. SF represents
the loss of load in the system. It is one unless the total load of
the system is supplied in which case is zero. Variable Busk is similar
to SF, however it is devoted to load point k. The value of Busk is
equal to zero if the total load of bus k is supplied; otherwise, it
equals to one. ng, nl and m are the number of derated generating
units, transmission system components and load points,
respectively.

The training data is provided by state sampling using MC simu-
lation [15]. The steps to generate the data can be summarized as:

1. The state of each component is determined by generating uni-
formly distributed random number Uj within [0–1] and it is then
compared with component forced outage rate (FOR). If Uj is smaller
than the FOR value of component j, the component is in outage
state and the state of component j, denoted by ej, is equal to one.
Otherwise, the component is in the normal state and ej equals zero.

Based on the value of ej for all components, the values of vari-
ables Gk and Lk in vector S are determined. If for all of the compo-
nents, ej is equal to zero, the system is in the normal state and the
values of all variables SF and Busi equal to zero. If at least the value
of a variable ej is equal to one, the system is in a contingency state
and the adequacy of system in supplying the load should be eval-
uated in the next step.

2. In contingency states, some corrective actions such as genera-
tion rescheduling, transformer tap adjustment, shunt capacitor
switching and load shedding may be taken to maintain the gener-
ation-demand balance, alleviate line overloads and satisfy the sys-
tem constraints. In this paper, generation rescheduling and load
shedding are considered as the corrective actions. In this way,
the following linear optimization load flow model is used [16]:

min
X

i2NC

WiCi

s:t:TðSiÞ ¼ AðSiÞðPGþ C� PDÞX

j2NG

PGj þ
X

j2NC

Cj ¼
X

j2NC

PDj

PGmin
6 PG 6 PGmax

0 6 C 6 PD
jTðSiÞj 6 Tmax

ð1Þ

Although the load shedding policy does not affect the reliability
indices of the overall system, it greatly affects the reliability assess-
ment of a power system from the viewpoint of load buses [17]. In
this model, some load curtailment policies can be incorporated in
the model by using the weighting factors Wi. The load shedding
policy used here is to curtail the loads at the buses that are more
close to the element(s) on outage. The purpose of this load shed-
ding policy is to localize the severity of an event within the area
in which the component(s) failure occurs.

Based on the results obtained using the above optimization
model for the load curtailment vector, C, the value of variables Busj

and SF are determined. It should be mentioned that in this study,

Nomenclature

Abbreviations
BN Bayesian Network
MSMC Multi-states Systems with Multi-states Component
FOR Forced outage rate
CPD Conditional probability distribution
P(.) Probability
SF System Failure event
Si System state in the ith simulation (in sample i)
ej Failure event of the component j.
Busj Loss of load event in bus j and its corresponding node in

BN
T(Si) Line flow vector under system state Si

Tmax Maximum capacity limit vector for the line flows T(Si)
A(Si) Relation matrix between line flows and power injec-

tions under state Si

PG Generation vector
PD Load vector
NG The set of generator buses
ND The set of load buses
C Load curtailment vector
W Weighting factor vector related to a specified load shed-

ding policy
MIðX;YÞ Mutual Information between variables X and Y
LOLP Loss of load probability
LOLF Loss of load frequency
DIF Diagnostic Importance Factor
kjl Transition rate form state j to l
l Repair rate
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