
Short links and tiny keyboards: A systematic exploration of design
trade-offs in link shortening services

Sandy J.J. Gould a,n, Anna L. Cox a, Duncan P. Brumby a, Sarah Wiseman b

a UCL Interaction Centre, University College London, 66-72 Gower Street, WC1E 6BT, United Kingdom
b Department of Computing, Goldsmiths, University of London, London SE14 6NW, United Kingdom

a r t i c l e i n f o

Article history:
Received 7 March 2016
Received in revised form
23 July 2016
Accepted 25 July 2016
Available online 28 July 2016

Keywords:
Link shortening
Short links
Keyboard
Optimization
Typing
Data entry
Mobile
Touchscreen

a b s t r a c t

Link-shortening services save space and make the manual entry of URLs less onerous. Short links are
often included on printed materials so that people using mobile devices can quickly enter URLs. Although
mobile transcription is a common use-case, link-shortening services generate output that is poorly suited
to entry on mobile devices: links often contain numbers and capital letters that require time consuming
mode switches on touch screen keyboards. With the aid of computational modeling, we identified
problems with the output of a link-shortening service, bit.ly. Based on the results of this modeling, we
hypothesized that longer links that are optimized for input on mobile keyboards would improve link
entry speeds compared to shorter links that required keyboard mode switches. We conducted a human
performance study that confirmed this hypothesis. Finally, we applied our method to a selection of
different non-word mobile data-entry tasks. This work illustrates the need for service design to fit the
constraints of the devices people use to consume services.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Semantically meaningful URLs are often long. This makes them
tedious to transcribe. QR codes obviate the need to type, but are
not human-readable and have a number of issues with usability
(Shin et al., 2012) and security (Vidas et al., 2013). Link shortening
services like bit.ly provide a compromise: the process of typing
complex and lengthy URLs is accelerated and human readability is
preserved. Unfortunately, many shortening services exhibit little
consideration for how links might be made quick and easy to type.
The outputs of shortening services usually contain a mix of num-
bers and mixed-case letters. On space-constrained mobile devices,
entering these characters requires changing the keyboard from
lowercase mode to number mode or uppercase mode. Making
these mode switches to access different characters is particularly
time consuming and error prone (Greene et al., 2014). Shorter
links, therefore, may not necessarily be faster to type.

Generating short links that do not require keyboard mode
switches necessarily means using a smaller selection of characters.
For a given link length this means fewer unique links can be
generated. This reduction in the number of options for each
character of a link can be mitigated by increasing the length of

links. But how much longer would such a link need to be? In this
paper we model the process of text entry on three widely-used
mobile platforms. We use simulations to systematically explore
the output of a popular shortening service, bit.ly. To see whether
the predictions we make based on our model hold true in reality
we test them in a game-like human performance study.

We found that link shorteners trade-off link length and entry
difficulty. Most shorteners optimize too aggressively for link
length; their output is awkward to transcribe. We show that links
can be made easier to type with only a modest increase in their
length. Given the increasingly limited functional utility of ultra-
short links on services like Twitter, link shortening services should
prioritize making links easier to type.

1.1. Related work

Efforts to make text entry easier for people have mostly focused
on improving entry interfaces, like keyboards (e.g., Cheng et al.,
2013; Leiva et al., 2015; Oulasvirta et al., 2013). Another way to
improve text entry is to adapt input interfaces to accommodate the
kinds of input that they are most likely to receive. Wiseman et al.
(2013) showed that in hospitals the distribution of digits entered
into devices is not random. Input interfaces that are designed for a
particular set of possible inputs perform better than standard in-
terfaces that do not take account of the strings that are likely to be
entered (Wiseman et al., 2013). The preponderance of third-party

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
1071-5819/& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

n Corresponding author.
E-mail address: s.gould@cs.ucl.ac.uk (S.J.J. Gould).

Int. J. Human-Computer Studies 96 (2016) 38–53

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.07.009&domain=pdf
mailto:s.gould@cs.ucl.ac.uk
http://dx.doi.org/10.1016/j.ijhcs.2016.07.009


mobile keyboards designed specifically for entering emoji char-
acters or calendar events also reflects this kind of thinking: make
the interface fit the input.

Unfortunately, implementing bespoke data-entry interfaces is a
luxury that is rarely available to designers. People do not have
custom keyboards installed for every input use case. More often
than not, the design of input interfaces is entirely out of the con-
trol of service designers. In most circumstances input values
should instead fit interfaces (see, e.g., Wiseman et al., 2016).

The entry of certain types of input can be suboptimal when
keyboard designs have had to make trade-offs. This is especially
the case for keyboards on phone-sized touchscreen devices. To
save space, one of the concessions the designers of touchscreen
keyboards make is to only show lowercase characters. Accessing
uppercase letters and numbers requires multiple taps to change a
keyboard's mode.

Gallagher and Byrne (2015) modeled the effect of having to
switch modes on touchscreen keyboards in the context of pass-
word entry. They found that the interval between typing two
lowercase letters was around 500 ms. The interval between typing
a lowercase letter and an uppercase letter was approximately
1500 ms, a three-fold increase. Mode switching on small
touchscreen keyboards is costly, but implementing a custom
keyboard solely for entering passwords is impractical: touchsc-
reens don’t have the space to display the full set of numbers, let-
ters and special characters in a single keyboard pane.

If input interfaces are fixed constraints in a system, we should
consider how a service might be adjusted so as to better fit those
constraints in likely contexts of use. This is not always possible, but
there are scenarios in which target information can be substituted
or altered without compromising a service. We focus on a parti-
cular example that exhibits this property: link shortening services.

1.2. Link shortening services

Link shortening services like bit.ly, ow.ly or goo.gl act as inter-
mediaries between users and websites. Users provide a target link, for
instance, https://www.elsevier.com/journals/international-journal-of-
human-computer-studies/1071-5819/guide-for-authors. A shortening
service generates a much shorter link, in this case, http://bit.ly/
1OT4BPc. A mapping between these long and short links is stored by
the shortening service. When a short URL is requested users are re-
directed to the original long URL.

Shorter links come at a cost: semantic information is lost from
a URL. In the example above, a user reading the long link has a
good idea that they’ll end up on an Elsevier page. The short link,

however, might just lead to Rick Astley's Never Gonna Give You Up
(http://bit.ly/e4Rt5rr). A user would not know until they had fol-
lowed it. The loss of semantic information has made shortening
services a vector for phishing attacks (Chhabra et al., 2011; Klien
and Strohmaier, 2012). Despite these shortcomings, shortening
services have a number of benefits.

Short links are useful when space is limited or when characters
are restricted. Shortening services also offer social media users
methods for tracking engagement. Short links are often easier to
copy and paste because they are more compact and generally do
not cover multiple lines. Short links can also ease transcription
from physical artefacts to digital devices. Short links feature on
print advertising (see Fig. 1) and on slides during talks. By using
shortened links, labyrinthine directions to a slide deck on a uni-
versity server can be shortened to a few quick keystrokes.

1.3. Improving link shorteners

How well do existing link shortening services meet the re-
quirements of the use cases we have discussed so far? RFC 3986
(Berners-Lee et al., 2005), which defines how URLs work, specifi-
cally discusses the tension between the digital and physical use of
URLs: “[URL] design considerations,” it says, “are not always in
alignment”. Given that trade-offs are required, do shortening ser-
vices make reasonable ones?

One of the constraints on link shortening schemas is the need
to be able to address a large potential set of links so that each short
link can be guaranteed to be unique. Shorteners like bit.ly produce
seven-character identifiers comprising numbers and mixed-case
characters. In this scheme, each character can be any of 62 options:
26 uppercase letters, 26 lowercase letters or 10 digits. This yields a
large space of possible identifiers, (26þ26þ10) 7, or around
3.5 trillion.

In the digital domain, unique identifiers could be made much
shorter by allowing more than 62 options for each character. Many
modern browsers (but not all services) support percent encoded
URLs. UTF-8, a method of encoding Unicode characters, supports
up to 1,112,064 characters. Using the full array of UTF-8 characters,
a link shortening schema could exceed the size of the bit.ly pool of
possible identifiers by orders of magnitude using only three
characters (i.e., 1,112,0643c627). This yields links that are physi-
cally smaller and use fewer characters. Additionally, a link like bit.
ly/-∴♣ is no more or less meaningful than a link like bit.ly/
E5tF68G. In the digital domain, where links are clicked and their
composition after shortening is immaterial, shorteners could in-
crease their effective compression ratio by using expanded

Fig. 1. Short links often appear on print advertising. Here the link contains numbers, capitals and lowercase characters.

S.J.J. Gould et al. / Int. J. Human-Computer Studies 96 (2016) 38–53 39

http://https://www.elsevier.com/journals/international-journal-of-human-computer-studies/1071-5819/guide-for-authors
http://https://www.elsevier.com/journals/international-journal-of-human-computer-studies/1071-5819/guide-for-authors
http://bit.ly/1OT4BPc
http://bit.ly/1OT4BPc
http://bit.ly/e4Rt5rr


Download English Version:

https://daneshyari.com/en/article/6861008

Download Persian Version:

https://daneshyari.com/article/6861008

Daneshyari.com

https://daneshyari.com/en/article/6861008
https://daneshyari.com/article/6861008
https://daneshyari.com

