
Journal of Symbolic Computation 90 (2019) 3–41

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Mechanical synthesis of sorting algorithms for 

binary trees by logic and combinatorial 
techniques

Isabela Drămnesc a, Tudor Jebelean b, Sorin Stratulat c

a West University of Timişoara, Romania
b RISC, Johannes Kepler University, Linz, Austria
c Université de Lorraine, CNRS, LORIA, F-57000 Metz, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 March 2017
Accepted 25 June 2017

Keywords:
Algorithm synthesis
Automated reasoning
Natural-style proving

We develop logic and combinatorial methods for automating 
the generation of sorting algorithms for binary trees, starting 
from input-output specifications and producing conditional rewrite 
rules. The main approach consists in proving (constructively) the 
existence of an appropriate output from every input. The proof 
may fail if some necessary sub-algorithms are lacking. Then, their 
specifications are suggested and their synthesis is performed by 
the same principles.
Our main goal is to avoid the possibly prohibitive cost of pure res-
olution proofs by using a natural-style proving in which domain-
specific strategies and inference steps lead to a significant increase 
of efficiency. In addition to classical techniques for natural-style 
proving, we introduce novel ones (priority of certain types of 
assumptions, transformation of elementary goals into conditions, 
special criteria for decomposition of the goal and of the assump-
tions), as well as methods based on the properties of domain-
specific relations and functions. In particular, we use combinatorial 
techniques in order to generate possible witnesses, which in cer-
tain cases lead to the discovery of new induction principles. From 
the proof, the algorithm is extracted by transforming inductive 
proof steps into recursions, and case-based proof steps into con-
ditionals.

E-mail addresses: isabela .dramnesc @e -uvt .ro (I. Drămnesc), Tudor.Jebelean @jku .at (T. Jebelean), 
sorin .stratulat @univ-lorraine .fr (S. Stratulat).

URLs: http://web .info .uvt .ro /~idramnesc (I. Drămnesc), http://www.risc .jku .at /home /tjebelea (T. Jebelean), https://
members .loria .fr /SStratulat/ (S. Stratulat).

https://doi.org/10.1016/j.jsc.2018.04.002
0747-7171/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsc.2018.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:isabela.dramnesc@e-uvt.ro
mailto:Tudor.Jebelean@jku.at
mailto:sorin.stratulat@univ-lorraine.fr
http://web.info.uvt.ro/~idramnesc
http://www.risc.jku.at/home/tjebelea
https://members.loria.fr/SStratulat/
https://doi.org/10.1016/j.jsc.2018.04.002
https://members.loria.fr/SStratulat/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2018.04.002&domain=pdf


4 I. Drămnesc et al. / Journal of Symbolic Computation 90 (2019) 3–41

The approach is demonstrated in parallel using the Theorema sys-
tem, by developing the theory, implementing the prover, and per-
forming the proofs of the necessary properties and synthesis con-
jectures. It is also validated in the Coq system, which allows to 
compare the facilities of the two systems from the point of view of 
our application.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

By algorithm synthesis we understand finding an algorithm which satisfies a given specifica-
tion. We are working in the context of proof-based synthesis of functional algorithms, starting from 
their formal specifications. A formal specification is expressed as two predicates: the input condi-
tion I[X] and the output condition O [X, T ].1 The desired function F must satisfy the correctness 
condition ∀

X
(I[X] ⇒ O [X, F [X]]), which corresponds to the synthesis conjecture: ∀

X
∃
T
(I[X] ⇒ O [X, T ]). 

An algorithm which implements F can be extracted from the (constructive) proof of this con-
jecture. The algorithm is expressed as a list of clauses (conditional rewrite rules) of the form: 
C[Z ] =⇒ F [P [Z ]] = T [Z ], where Z is a vector of variables, P [Z ] is a pattern over these variables 
(with the property that it matches unambiguously certain elements of the domain), and T [Z ] is a 
term over the matching variables. The research presented here is focused on developing effective and 
efficient techniques for mechanizing the synthesis-proofs of sorting algorithms over the domain of 
binary trees, the synthesis-proofs of the auxiliary functions occurring in these algorithms, and the 
proofs of the additional properties which are necessary in the synthesis-proofs.

Our approach is experimental: we try various scenarios and techniques and refine them in order 
to obtain efficient proofs and various algorithms. The way the constructive proof is built is essential 
since the definition of the algorithm depends on it. For example, case splits may generate conditional 
branches and induction steps may produce recursive definitions. Hence, the use of different case rea-
soning techniques and induction principles may output different algorithms. The soundness of the 
proof rules and of the extraction procedure guarantee the correctness of the algorithm.

The focus of our work is on proof automation. In our experiments all the proofs are produced 
completely automatically, while the theory exploration (identification of all necessary auxiliary state-
ments), the selection of the assumptions and of the induction principles used by the prover in each 
proof, and the construction of the conjectures from the failing proofs are performed manually.

The implementations of the new prover and extractor, as well as of the case studies presented in 
this paper are carried out in the frame of the Theorema system (Buchberger et al., 2016) which is itself 
implemented in Mathematica (Wolfram, 2003). Theorema offers significant support for automating the 
algorithm synthesis; in particular, the new proof strategies and inference rules have been quickly 
prototyped, tested and integrated in the system thanks to its extension features. Also, the proofs are 
easier to understand since they are presented in a human-oriented style. Moreover the synthesized 
algorithms can be directly executed in the system. The implementation files and the full proofs are 
presented in Dramnesc et al. (2015b). We additionally validate the results in the frame of the Coq
system (Bertot and Casteran, 2004), by mechanically checking that the synthesized sorting algorithms 
satisfy the correctness conditions.

In parallel with the attempts to prove the conjectures corresponding to the synthesis problems, we 
explore the theory of binary trees, that is we introduce the necessary axioms and definitions, and we 
develop the necessary properties and prove them automatically. The full necessary theory is explored 
in Theorema, while in the Coq system, we only introduce the notions and properties necessary for the 
process of certifying the synthesized sorting algorithms.

1 The square brackets are used for function and predicate applications instead of round brackets.



Download English Version:

https://daneshyari.com/en/article/6861160

Download Persian Version:

https://daneshyari.com/article/6861160

Daneshyari.com

https://daneshyari.com/en/article/6861160
https://daneshyari.com/article/6861160
https://daneshyari.com

