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One method to determine whether or not a system of partial differ-
ential equations is consistent is to attempt to construct a solution 
using merely the “algebraic data” associated to the system. In tech-
nical terms, this translates to the problem of determining the exis-
tence of regular realizations of differential kernels via their possible 
prolongations. In this paper we effectively compute an improved 
upper bound for the number of prolongations needed to guarantee 
the existence of such realizations, which ultimately produces so-
lutions to many types of systems of partial differential equations. 
This bound has several applications, including an improved upper 
bound for the order of characteristic sets of prime differential ide-
als. We obtain our upper bound by proving a new result on the 
growth of the Hilbert–Samuel function, which may be of indepen-
dent interest.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study techniques that effectively determine if a given system of algebraic partial 
differential equations is consistent; that is, if the system has a solution in a differential field extension 
of the ground differential field in which the coefficients of the system live. Our approach is to study 
the set of algebraic solutions of a given system of algebraic differential equations (viewed as a purely 
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algebraic system), and then determine if an algebraic solution can be used to construct a differential 
solution. This construction is not always possible, as evidenced by very basic examples such as the 
following:{

∂1u = u

∂2u = 1
(1.1)

where u is a differential indeterminate over some ground differential field with two commuting 
derivations ∂1 and ∂2. If we consider the associated algebraic system obtained by replacing u, ∂1u, 
and ∂2u with algebraic indeterminates x, z1, and z2, respectively, we obtain{

z1 = x

z2 = 1,

which has a solution. However, the differential system (1.1) is inconsistent, since the existence of a 
differential solution a in some differential field would imply 1 = ∂2∂1a = ∂1∂2a = 0. It is important to 
note that the inconsistency of the system becomes apparent after differentiating the system once. The 
number of differentiations needed to reveal that a given system is inconsistent is the main motivation 
of this paper. Furthermore, we seek to effectively determine this number from data obtained from the 
equations (their order and the number of derivations and indeterminates).

To make the above discussion more precise, we study differential kernels, which are field exten-
sions of the ground differential field (K , ∂1, . . . , ∂m) obtained by adjoining a solution of the associated 
algebraic system such that this solution serves as a means to “prolong” the derivations from K (see 
Definition 1 for the precise definition of differential kernels). Differential kernels in a single derivation 
were studied by Cohn (1979) and Lando (1970). In Section 2, we consider differential kernels with 
an arbitrary number of commuting derivations. A differential kernel is said to have a regular realiza-
tion if there is a differential field extension of K containing the differential kernel and such that the 
generators of the kernel form the sequence of derivatives of the generators of order zero. The key 
observation is that a differential kernel has a regular realization if and only if the chosen solution 
of the associated algebraic system (i.e., the generators of the differential kernel) can be prolonged to 
yield a differential solution to the original system of differential equations. Thus, the problem of de-
termining the consistency of a given system of differential equations is equivalent to the problem of 
determining the existence of regular realizations of a given differential kernel. In a single derivation, 
every differential kernel has a regular realization (Lando, 1970, Proposition 3). However, this is no 
longer the case with more than one derivation, as evidenced by the system (1.1) above, which is also 
discussed in Example 3 below.

The first analysis of differential kernels with several commuting derivations appears in the work 
of Pierce (2014), using different terminology (there a differential kernel is referred to as a field ex-
tension satisfying the differential condition). In that paper it is shown that if a differential kernel has 
a prolongation of a certain length (that is, we can extend the derivations from the algebraic solution 
some finite number of times), then it has a regular realization; see Theorem 11 below. We note here 
that even if a differential kernel has a proper prolongation, this is no guarantee that a regular realiza-
tion will exist, as evidenced by Example 9 below. We denote by T n

r,m the smallest prolongation length 
that guarantees the existence of a regular realization of any differential kernel of length r in n differ-
ential indeterminates over any differential field of characteristic zero with m commuting derivations; 
see Definition 12. Note that this number only depends on the data (r, m, n); in particular, it does 
not depend on the degree of the algebraic system associated to the differential kernel. A recursive 
construction of an upper bound for T n

r,m was provided in León Sánchez and Ovchinnikov (2016, §3); 
unfortunately, this upper bound is unwieldy from a computational standpoint even when m = 2 or 3.

In this paper, we provide a new and improved upper bound for T n
r,m . This new upper bound is 

given in Theorem 18 by the number Cn
r,m , which we introduce in Section 3. The central idea for the 

construction of Cn
r,m comes from weakening a condition imposed on what are called the minimal 

leaders of a differential kernel that guarantees the existence of a regular realization (compare condi-
tions (†) and (�)). In further sections we show that there is a recursive algorithm that computes the 



Download English Version:

https://daneshyari.com/en/article/6861171

Download Persian Version:

https://daneshyari.com/article/6861171

Daneshyari.com

https://daneshyari.com/en/article/6861171
https://daneshyari.com/article/6861171
https://daneshyari.com

