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This paper presents fundamental algorithms for the computational 
theory of quadratic forms over number fields. In the first part 
of the paper, we present algorithms for checking if a given non-
degenerate quadratic form over a fixed number field is either 
isotropic (respectively locally isotropic) or hyperbolic (respectively 
locally hyperbolic). Next we give a method of computing the di-
mension of an anisotropic part of a quadratic form. The second part 
of the paper is devoted to algorithms computing two field invari-
ants: the level and the Pythagoras number. Ultimately we present 
an algorithm verifying whether two number fields have isomorphic 
Witt rings (i.e. are Witt equivalent).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The algebraic theory of quadratic forms is a mature and important branch of mathematics. Yet 
still, the computational side of this theory is seriously under-developed. The majority of research 
concentrate on forms over the rationals. Consequently, while there are already a couple of algorithms 
over Q for solving a highly non-trivial problem of determining isotropic vectors of quadratic forms 
(see e.g. Cremona and Rusin (2003); Simon (2005); Castel (2013)), little has been done so far for 
forms over number fields (i.e. finite extensions of Q). The algebraic theory of quadratic forms over 
number fields are very like the theory over the rationals, nevertheless the computational approach 
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seems to be rudimentary here. The aim of this article is to partially fill this gap, as well as provoke 
further discussion and future research.

This paper is organized as follows: in Section 2 we present an algorithm (see Algorithm 5) for 
checking if a given form (over a fixed number field K ) is isotropic. This algorithm uses sub-procedures 
(Algorithms 2 and 3) for deciding whether the form is isotropic at a non-archimedean prime of K
(respectively odd or even). These two algorithms may be of an independent interest to the reader. 
Next, in Section 3, Algorithm 7 determines if a quadratic form is hyperbolic, again utilizing the local 
approach.

It is known that any non-degenerate form can be uniquely decomposed into an orthogonal sum 
of its anisotropic part and a hyperbolic form (one of these two parts may of course be void if the 
form in question is either anisotropic or hyperbolic itself). In Section 4 we present a procedure that 
computes the dimension of an anisotropic part of a quadratic form.

In Sections 5–7 we go a step further and develop algorithms for computing invariants of the 
ground fields, that play important roles in the algebraic theory of quadratic forms. Algorithm 10
computes the level s(K ) of a number field K , which is the length of the shortest representation of 
−1 as a sum of squares. Another invariant of the field is the minimal number of squares needed to 
represent any sum of squares. This invariant is called the Pythagoras number and is computed by 
Algorithm 11.

Recall that the set W K of similarity classes of non-degenerate symmetric bilinear forms over a 
given base field K is a ring with operations induced by the orthogonal sum and the tensor product. It 
is called the Witt ring of the field K . Because a bilinear form defines an orthogonal geometry on the 
vector space on which it is defined, the Witt ring can be viewed as an algebraic structure encoding 
information on all possible orthogonal geometries over a given base field. Two fields are said to be 
Witt equivalent, if their Witt rings are isomorphic. The set of global field invariants that fully determine 
its Witt equivalence class was described in Szymiczek (1991). In Section 7 we present Algorithm 13
which computes all these invariants. In particular the algorithm may be used to verify whether two 
number fields are Witt equivalent.

The authors implemented all the algorithms presented in this paper in a computer algebra system 
Sage. Using this implementation, we were able to find representatives of Witt classes of number fields 
of low degrees. These results are presented in Tables A.1–A.4. Moreover, using our implementation, 
we were able to give an affirmative answer to Conner’s question for number field of degree not 
exceeding 6 (for details see the last section of the paper).

In this paper, K = Q(ϑ) is always a number field specified by the minimal polynomial of ϑ over 
Q and OK is the integral closure of Z in K . Two basic building blocks that we use in subsequent 
algorithms are procedures that test whether a given algebraic number a ∈ K is a square: either in its 
base field K or in a completion Kp, where p is a prime of K . A procedure testing whether an element 
is a square in a number field is available as standard in computer algebra systems. On the other 
hand, testing whether a is a square in a completion Kp is obviously equivalent to testing whether 
x2 − a is irreducible in Kp[x]. There are known algorithms for testing irreducibility of a polynomial in 
local fields. These include Montes’ algorithm (see e.g. Veres (2009) or Guàrdia et al. (2011, 2012)) or 
variations of Zassenhaus Round Four algorithm (see e.g. Pauli (2001, 2010)).

In the algorithms presented below, an input is a non-degenerate diagonal quadratic form with 
coefficients in some number field K . Since K is the field of fractions of OK and for every a, b ∈ OK , 
both a/b and a ·b belong to the same square-class on K̇/K̇ 2, hence in Algorithms 1–9 we usually assume 
that the coefficients of the quadratic form come from OK .

2. Isotropy of a quadratic form

In this section, we present an algorithm that checks if a given form ϕ over a number field K
is isotropic or not. The organization of this section reflects the general idea of solving the problem 
locally. Hence, Algorithms 2, 3 and 4 deal respectively with odd and even finite fields and real infinite 
primes of K . Finally, Algorithm 5 checks if the form is globally isotropic, using the above-mentioned 
algorithms as sub-procedures.
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