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The paper deals with geometric constraints on Delaunay polytopes, 
arising from hypermetric inequalities with origins in lattice theory. 
In some cases the constraints are sufficient to uniquely define a 
Delaunay polytope, a situation of primary interest in combinatorial 
rigidity; and the configuration space of underconstrained Delaunay 
polytopes defines a face of the hypermetric cone. Symbolic algo-
rithms and computations algorithms form the basis of the paper’s 
results and illustrative examples.
The lists of facets – 298, 592 in 86 orbits – and of extreme rays 
– 242, 695, 427 in 9, 003 orbits – of the hypermetric cone HY P8
are computed. The notion of hypermetric occurs in Metric Geome-
try and realization spaces of Delaunay polytopes in lattices and we 
consider a number of generalizations.
The first one is the hypermetric polytope HY P Pn , for which we 
give general algorithms and a description for n ≤ 8. We give a com-
plete theory of it and of its link to centrally symmetric Delaunay 
polytope.
Then we shortly consider generalizations to the case of lattice De-
launay simplices of index higher than 1. The case of hypermetrics 
on graphs is also considered and we show how one can obtain new 
valid inequalities for the cut-polytope of a graph. We then consider 
shortly the case of infinite hypermetrics.
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Fig. 1. Two interesting graphs and properties of their shortest path distances dG .

1. Introduction

Metric, cut and hypermetric cones are among central objects of Discrete Mathematics. For example, 
finite metrics and l1-metrics can be studied by polyhedral cones and polytopes; see, say, Deza and 
Laurent (2010).

The hypermetric cone HY Pn is the set of all hypermetrics on n points, i.e., the functions d :
{1, . . . , n}2 → R, such that d(i, i) = 0, d(i, j) = d( j, i) and

H(b,d) =
∑

1≤i< j≤n

bib jd(i, j) ≤ 0 for all b ∈ Z
n,

n∑
i=1

bi = 1.

The metric cone M E Tn is the set of all semimetrics on n points, i.e., above functions d, which satisfy 
only all triangle inequalities:

d(i, j) ≤ d(i,k) + d(k, j) for 1 ≤ i, j,k ≤ n.

Note that triangle inequalities are hypermetric inequalities for b = (1, 1, −1, 0n−3) and its permuta-
tions.

For a set S ⊆ {1, . . . , n}, the cut (or split) semimetric δS is a vector defined as

δS(x, y) =
{

1 if |S ∩ {x, y}| = 1
0 otherwise.

Clearly, δS = δS , and δS can be seen also as the adjacency matrix of a cut (into S and S) subgraph
of Kn . The cut cone C U Tn is the positive span of the 2n−1 − 1 non-zero cut semimetrics; the cut 
polytope C U T Pn is the convex hull of all 2n−1 cut semimetrics. We have the inclusions C U Tn ⊆
HY Pn ⊆ M E Tn , as well as the inclusions C U T Pn ⊆ HY P Pn ⊆ M E T Pn for the polytopes M E T Pn and 
HY P Pn defined later. In Fig. 1 we give examples of distances showing that the inclusions are strict. 
We have C U Tn = M E Tn only for 3 ≤ n ≤ 4; also, C U Tn = HY Pn only for 3 ≤ n ≤ 6 (Deza and Laurent, 
2010); see Table 1 for the number of facets and extreme rays of C U Tn , HY Pn and M E Tn for n ≤ 8.

The cut polytope is directly related to the Max-Cut Problem (Korte and Vygen, 2008) which 
is a classic problem of Combinatorial Optimization on graphs. The Max-Cut Problem is used for 
l1-embedding questions (Deza et al., 2004) of graphs, as well as for application in Analysis, Com-
binatorics, Combinatorial Optimization (Deza and Laurent, 2010), and Statistical Mechanics (Anglès 
d’Auriac et al., 1997). A finite metric is hypermetric if and only if it corresponds to the squared Eu-
clidean distance between vertices of a Delaunay polytope of index 1; see Section 3 for details. In 
Section 5 we generalize this result and establish the link between the hypermetric polytope HY P Pn

and n-dimensional centrally symmetric Delaunay polytopes. In Section 6, we consider the generaliza-
tion of hypermetric cone to Delaunay polytope of index higher than 1.
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