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In this article we will discuss a mostly theoretical framework for 
solving zero-dimensional polynomial systems. Complexity bounds 
are obtained for solving such systems using a new parameter, 
called the last fall degree, which does not depend on the choice 
of a monomial order. The method is similar to certain MutantXL 
algorithms, but our abstract formulation has advantages. For 
example, we can prove that the cryptographic systems multi-HFE 
and HFE are insecure.
More generally, let k be a finite field of cardinality qn and let 
k′ be the subfield of cardinality q. Let F ⊂ k[X0, . . . , Xm−1] be a 
finite subset generating a zero-dimensional ideal. We give an upper 
bound of the last fall degree of the Weil descent system of F from 
k to k′ , which depends on q, m, the last fall degree of F , the degree 
of F and the number of solutions of F , but not on n. This shows 
that such Weil descent systems can be solved efficiently if n grows 
and the other parameters are fixed. In particular, one can apply 
these results to show a weakness in the cryptographic protocols 
HFE and multi-HFE.
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1. Introduction

Let k be a field and let F ⊂ R = k[X0, . . . , Xm−1] be a finite subset which generates a zero-
dimensional ideal I . By this we mean that dimk(R/I) = e < ∞. Let R≤i be the set of polynomials 
in R of degree at most i. Suppose that we want to find the finitely many solutions of F in km (or in 
k

m
). We denote an algebraic closure of k by k.
One of the most common methods is the following. First fix a monomial order on R , such as 

the degree reverse lexicographic order, and then compute a Gröbner basis of the ideal generated by 
F using for example F4 or F5 (Faugère, 1999, 2002). Then one computes a Gröbner basis for the 
lexicographic order using FGLM (Faugère et al., 1993), and one uses this to find all the solutions. It is 
often very hard to estimate the complexity of such algorithms. The largest degree which one sees in 
such a computation of a Gröbner basis for the degree reverse lexicographic order is called the degree 
of regularity, and this degree essentially determines the complexity of such algorithms. One approach 
to obtain heuristic complexity bounds on the degree of regularity is the use of the so-called first fall 
degree assumption. For i ∈ Z≥0, we let VF ,i be the smallest k-vector space of R≤i such that

i. { f ∈F : deg( f ) ≤ i} ⊆ VF ,i ;
ii. if g ∈ VF ,i and if h ∈ R with deg(hg) ≤ i, then hg ∈ VF ,i .

The first fall degree is defined to be the first d such that VF ,d ∩ R≤d−1 
= VF ,d−1 (and if it does 
not exist, it is defined to be 0; note that this definition of the first fall degree differs slightly from 
most definitions as in Petit and Quisquater, 2012, but behaves a lot better). The heuristic claim is 
that the first fall degree is close to the degree of regularity for many systems (see for example Petit 
and Quisquater, 2012). A quote from Ding and Hodges (2011) is “Our conclusions rely on no heuris-
tic assumptions beyond the standard assumption that the Gröbner basis algorithms terminate at or 
shortly after the degree of regularity” (note that in Ding and Hodges, 2011 the definition of degree 
of regularity coincides with the first fall degree definition of Petit and Quisquater, 2012). It is quite 
often easy to give an upper bound on the first fall degree, just by counting arguments (see Ding and 
Hodges, 2011 for example). However, in Kosters and Yeo (2015), the second and third author of this 
article raise doubt to the first fall degree heuristic.

In the first part of this article, section 2, we will try to rectify the situation. We will define the no-
tion of last fall degree, which is the largest d such that VF ,d ∩ R≤d−1 
= VF ,d−1. We denote the last fall 
degree of F by dF . We show how one can solve the system by computing VF ,max{dF ,e} and mono-
variate factoring algorithms (Proposition 2.11). We will also prove different properties of the last fall 
degree, for example, that the degree of regularity is bounded below by the last fall degree and above 
by the maximum of e and the last fall degree. Furthermore, the last fall degree behaves well with re-
spect to certain operations (such as linear change of variables and linear change of equations). It must 
be said that we do not know how to compute the last fall degree without having an upper bound, 
say coming from the degree of regularity. We will compare our approach with other approaches for 
solving systems, most notably with MutantXL and standard Gröbner basis algorithms (Subsection 2.5).

In the second part of this article, Section 3 and Section 4, we will give an application of our new 
framework around the last fall degree. Assume that k is a finite field of cardinality qn with subfield 
k′ of cardinality q. Let F ′ be the Weil descent system of F to k′ . This is the system one obtains 
when one expresses all equations with the help of a basis of k/k′ . This is a system in nm variables 
and hence seems to be much harder to solve than the original system. We give upper bounds on 
dF ′ in terms of q, m, dF , the degree of F and the number of solutions of F , but not on n. This 
generalizes practical and mathematical results, if m = 1 (Bettale et al., 2013; Ding and Hodges, 2011;
Faugère and Joux, 2003; Petit, 2013). This shows that some versions of multi-HFE (HFE stands for 
hidden field equations) are much easier to tackle than one would expect. Let us now give a precise 
formulation of the main theorem.

We denote by Z(F) the set of zeros of F over k. For r ∈ R≥0 and c, t ∈ R≥1 we set

τ (r, c, t) = �2t(c − 1)
(

logc

( r

2t
+ 1

)
+ 1

)
�.

Note that this function increases when r increases.
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