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We describe a subdivision algorithm for isolating the complex roots 
of a polynomial F ∈C[x]. Given an oracle that provides approxima-
tions of each of the coefficients of F to any absolute error bound 
and given an arbitrary square B in the complex plane contain-
ing only simple roots of F , our algorithm returns disjoint isolating 
disks for the roots of F in B.
Our complexity analysis bounds the absolute error to which the 
coefficients of F have to be provided, the total number of iter-
ations, and the overall bit complexity. It further shows that the 
complexity of our algorithm is controlled by the geometry of the 
roots in a near neighborhood of the input square B, namely, the 
number of roots, their absolute values and pairwise distances. The 
number of subdivision steps is near-optimal. For the benchmark 
problem, namely, to isolate all the roots of a polynomial of degree 
n with integer coefficients of bit size less than τ , our algorithm 
needs Õ (n3 + n2τ ) bit operations, which is comparable to the 
record bound of Pan (2002). It is the first time that such a bound 
has been achieved using subdivision methods, and independent of 
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divide-and-conquer techniques such as Schönhage’s splitting circle 
technique.
Our algorithm uses the quadtree construction of Weyl (1924) with 
two key ingredients: using Pellet’s Theorem (1881) combined with 
Graeffe iteration, we derive a “soft-test” to count the number of 
roots in a disk. Using Schröder’s modified Newton operator com-
bined with bisection, in a form inspired by the quadratic interval 
method from Abbot (2006), we achieve quadratic convergence to-
wards root clusters. Relative to the divide-conquer algorithms, our 
algorithm is quite simple with the potential of being practical. This 
paper is self-contained: we provide pseudo-code for all subroutines 
used by our algorithm.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The computation of the roots of a univariate polynomial is one of the best studied problems in the 
areas of computer algebra and numerical analysis, nevertheless there are still a number of novel algo-
rithms presented each year; see McNamee and Pan (2012; 2013), McNamee (2002; 2007), Pan (1997)
for an extensive overview. One reason for this development is undoubtedly the great importance of 
the problem, which results from the fact that solutions for many problems from mathematics, engi-
neering, computer science, or the natural sciences make critical use of univariate root solving. Another 
reason for the steady research is that, despite the huge existing literature, there is still a large discrep-
ancy between methods that are considered to be efficient in practice and those that achieve good the-
oretical bounds. For instance, for computing all complex roots of a polynomial, practitioners typically 
use Aberth’s, Weierstrass–Durand–Kerner’s and QR algorithms. These iterative methods are relatively 
simple as, in each step, we only need to evaluate the given polynomial (and its derivative) at certain 
points. They have been integrated in popular packages such as MPSolve (Bini and Fiorentino, 2000;
Bini and Robol, 2014) or eigensolve (Fortune, 2002), regardless of the fact that their excellent em-
pirical behavior has not been entirely verified in theory. In contrast, there exist algorithms (Emiris 
et al., 2014; Mehlhorn et al., 2015; Pan, 2002) that achieve near-optimal bounds with respect to 
asymptotic complexity; however, implementations of these methods do not exist. The main reason for 
this situation is that these algorithms are quite involved and that they use a series of asymptotically 
fast subroutines (see Pan, 2002, p. 702). In most cases, this rules out a self-contained presentation, 
which makes it difficult to access such methods, not only for practitioners but also for researchers 
working in the same area. In addition, for an efficient implementation, it would be necessary to in-
corporate a sophisticated precision management and many implementation tricks. Even then, there 
might still be a considerable overhead due to the extensive use of asymptotically fast subroutines, 
which does not show up in the asymptotic complexity bounds but is critical for input sizes that can 
be handled on modern computers.

In this paper, we aim to resolve the above described discrepancy by presenting a subdivi-
sion algorithm for complex root isolation, which we denote by CIsolate. For our method, we 
mainly combine simple and well-known techniques such as the classical quad-tree construction 
by Weyl (1924), Pellet’s Theorem (Rahman and Schmeisser, 2002), Graeffe iteration5 (Best, 1949;
Householder, 1959), and Schröder’s modified Newton operator (Schröder, 1870). In addition, we de-
rive bounds on its theoretical worst-case complexity matching the best bounds currently known for 
this problem; see Section 1.1 for more details. Hence, we hope that our contribution will finally bring 

5 Following Householder (1959), the method should not be attributed to Gräffe only. In fact, it was developed independently 
by Dandelin in 1826 and Gräffe in 1837. Also, Lobachevsky’s contribution from 1834 is significant as it contains the key idea of 
the approach. For simplicity, we stick to the commonly used designation “Graeffe iteration” even though it seems to be more 
correct to call the method “Dandelin–Lobachevsky–Graeffe method”.
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